king007 sussahoo commited on
Commit
ed30d9f
·
0 Parent(s):

Duplicate from sussahoo/table_extraction

Browse files

Co-authored-by: Susanta Sahoo <sussahoo@users.noreply.huggingface.co>

Files changed (6) hide show
  1. .gitattributes +34 -0
  2. README.md +13 -0
  3. app.py +480 -0
  4. image_0.png +0 -0
  5. packages.txt +2 -0
  6. requirements.txt +12 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Table Extraction
3
+ emoji: 💻
4
+ colorFrom: pink
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.13.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: sussahoo/table_extraction
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageEnhance, ImageOps
2
+ import string
3
+ from collections import Counter
4
+ from itertools import tee, count
5
+ import pytesseract
6
+ from pytesseract import Output
7
+ import json
8
+ import pandas as pd
9
+
10
+ # import matplotlib.pyplot as plt
11
+ import cv2
12
+ import numpy as np
13
+ from transformers import DetrFeatureExtractor
14
+ from transformers import TableTransformerForObjectDetection
15
+ import torch
16
+ import gradio as gr
17
+ import pdf2image
18
+
19
+
20
+ def plot_results_detection(
21
+ model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
22
+ ):
23
+ plt.imshow(image)
24
+ ax = plt.gca()
25
+
26
+ for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()):
27
+ cl = p.argmax()
28
+ xmin, ymin, xmax, ymax = (
29
+ xmin - delta_xmin,
30
+ ymin - delta_ymin,
31
+ xmax + delta_xmax,
32
+ ymax + delta_ymax,
33
+ )
34
+ ax.add_patch(
35
+ plt.Rectangle(
36
+ (xmin, ymin),
37
+ xmax - xmin,
38
+ ymax - ymin,
39
+ fill=False,
40
+ color="red",
41
+ linewidth=3,
42
+ )
43
+ )
44
+ text = f"{model.config.id2label[cl.item()]}: {p[cl]:0.2f}"
45
+ ax.text(
46
+ xmin - 20,
47
+ ymin - 50,
48
+ text,
49
+ fontsize=10,
50
+ bbox=dict(facecolor="yellow", alpha=0.5),
51
+ )
52
+ plt.axis("off")
53
+
54
+
55
+ def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
56
+ """
57
+ crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
58
+ """
59
+ cropped_img_list = []
60
+
61
+ for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
62
+
63
+ xmin, ymin, xmax, ymax = (
64
+ xmin - delta_xmin,
65
+ ymin - delta_ymin,
66
+ xmax + delta_xmax,
67
+ ymax + delta_ymax,
68
+ )
69
+ cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
70
+ cropped_img_list.append(cropped_img)
71
+ return cropped_img_list
72
+
73
+
74
+ def add_padding(pil_img, top, right, bottom, left, color=(255, 255, 255)):
75
+ """
76
+ Image padding as part of TSR pre-processing to prevent missing table edges
77
+ """
78
+ width, height = pil_img.size
79
+ new_width = width + right + left
80
+ new_height = height + top + bottom
81
+ result = Image.new(pil_img.mode, (new_width, new_height), color)
82
+ result.paste(pil_img, (left, top))
83
+ return result
84
+
85
+
86
+ def table_detector(image, THRESHOLD_PROBA):
87
+ """
88
+ Table detection using DEtect-object TRansformer pre-trained on 1 million tables
89
+ """
90
+
91
+ feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
92
+ encoding = feature_extractor(image, return_tensors="pt")
93
+
94
+ model = TableTransformerForObjectDetection.from_pretrained(
95
+ "microsoft/table-transformer-detection"
96
+ )
97
+
98
+ with torch.no_grad():
99
+ outputs = model(**encoding)
100
+
101
+ probas = outputs.logits.softmax(-1)[0, :, :-1]
102
+ keep = probas.max(-1).values > THRESHOLD_PROBA
103
+
104
+ target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
105
+ postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
106
+ bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
107
+
108
+ return (model, probas[keep], bboxes_scaled)
109
+
110
+
111
+ def table_struct_recog(image, THRESHOLD_PROBA):
112
+ """
113
+ Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
114
+ """
115
+
116
+ feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
117
+ encoding = feature_extractor(image, return_tensors="pt")
118
+
119
+ model = TableTransformerForObjectDetection.from_pretrained(
120
+ "microsoft/table-transformer-structure-recognition"
121
+ )
122
+ with torch.no_grad():
123
+ outputs = model(**encoding)
124
+
125
+ probas = outputs.logits.softmax(-1)[0, :, :-1]
126
+ keep = probas.max(-1).values > THRESHOLD_PROBA
127
+
128
+ target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
129
+ postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
130
+ bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
131
+
132
+ return (model, probas[keep], bboxes_scaled)
133
+
134
+
135
+ def generate_structure(
136
+ model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom
137
+ ):
138
+ colors = ["red", "blue", "green", "yellow", "orange", "violet"]
139
+ """
140
+ Co-ordinates are adjusted here by 3 'pixels'
141
+ To plot table pillow image and the TSR bounding boxes on the table
142
+ """
143
+ # plt.figure(figsize=(32,20))
144
+ # plt.imshow(pil_img)
145
+ # ax = plt.gca()
146
+ rows = {}
147
+ cols = {}
148
+ idx = 0
149
+ for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
150
+
151
+ xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
152
+ cl = p.argmax()
153
+ class_text = model.config.id2label[cl.item()]
154
+ text = f"{class_text}: {p[cl]:0.2f}"
155
+ # or (class_text == 'table column')
156
+ # if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
157
+ # ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2))
158
+ # ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5))
159
+
160
+ if class_text == "table row":
161
+ rows["table row." + str(idx)] = (
162
+ xmin,
163
+ ymin - expand_rowcol_bbox_top,
164
+ xmax,
165
+ ymax + expand_rowcol_bbox_bottom,
166
+ )
167
+ if class_text == "table column":
168
+ cols["table column." + str(idx)] = (
169
+ xmin,
170
+ ymin - expand_rowcol_bbox_top,
171
+ xmax,
172
+ ymax + expand_rowcol_bbox_bottom,
173
+ )
174
+
175
+ idx += 1
176
+
177
+ # plt.axis('on')
178
+ return rows, cols
179
+
180
+
181
+ def sort_table_featuresv2(rows: dict, cols: dict):
182
+ # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
183
+ rows_ = {
184
+ table_feature: (xmin, ymin, xmax, ymax)
185
+ for table_feature, (xmin, ymin, xmax, ymax) in sorted(
186
+ rows.items(), key=lambda tup: tup[1][1]
187
+ )
188
+ }
189
+ cols_ = {
190
+ table_feature: (xmin, ymin, xmax, ymax)
191
+ for table_feature, (xmin, ymin, xmax, ymax) in sorted(
192
+ cols.items(), key=lambda tup: tup[1][0]
193
+ )
194
+ }
195
+
196
+ return rows_, cols_
197
+
198
+
199
+ def individual_table_featuresv2(pil_img, rows: dict, cols: dict):
200
+
201
+ for k, v in rows.items():
202
+ xmin, ymin, xmax, ymax = v
203
+ cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
204
+ rows[k] = xmin, ymin, xmax, ymax, cropped_img
205
+
206
+ for k, v in cols.items():
207
+ xmin, ymin, xmax, ymax = v
208
+ cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
209
+ cols[k] = xmin, ymin, xmax, ymax, cropped_img
210
+
211
+ return rows, cols
212
+
213
+
214
+ def object_to_cellsv2(
215
+ master_row: dict,
216
+ cols: dict,
217
+ expand_rowcol_bbox_top,
218
+ expand_rowcol_bbox_bottom,
219
+ padd_left,
220
+ ):
221
+ """Removes redundant bbox for rows&columns and divides each row into cells from columns
222
+ Args:
223
+ Returns:
224
+
225
+ """
226
+ cells_img = {}
227
+ header_idx = 0
228
+ row_idx = 0
229
+ previous_xmax_col = 0
230
+ new_cols = {}
231
+ new_master_row = {}
232
+ previous_ymin_row = 0
233
+ new_cols = cols
234
+ new_master_row = master_row
235
+ ## Below 2 for loops remove redundant bounding boxes ###
236
+ # for k_col, v_col in cols.items():
237
+ # xmin_col, _, xmax_col, _, col_img = v_col
238
+ # if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col):
239
+ # print('Found a column with double bbox')
240
+ # continue
241
+ # previous_xmax_col = xmax_col
242
+ # new_cols[k_col] = v_col
243
+
244
+ # for k_row, v_row in master_row.items():
245
+ # _, ymin_row, _, ymax_row, row_img = v_row
246
+ # if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row):
247
+ # print('Found a row with double bbox')
248
+ # continue
249
+ # previous_ymin_row = ymin_row
250
+ # new_master_row[k_row] = v_row
251
+ ######################################################
252
+ for k_row, v_row in new_master_row.items():
253
+
254
+ _, _, _, _, row_img = v_row
255
+ xmax, ymax = row_img.size
256
+ xa, ya, xb, yb = 0, 0, 0, ymax
257
+ row_img_list = []
258
+ # plt.imshow(row_img)
259
+ # st.pyplot()
260
+ for idx, kv in enumerate(new_cols.items()):
261
+ k_col, v_col = kv
262
+ xmin_col, _, xmax_col, _, col_img = v_col
263
+ xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left
264
+ # plt.imshow(col_img)
265
+ # st.pyplot()
266
+ # xa + 3 : to remove borders on the left side of the cropped cell
267
+ # yb = 3: to remove row information from the above row of the cropped cell
268
+ # xb - 3: to remove borders on the right side of the cropped cell
269
+ xa = xmin_col
270
+ xb = xmax_col
271
+ if idx == 0:
272
+ xa = 0
273
+ if idx == len(new_cols) - 1:
274
+ xb = xmax
275
+ xa, ya, xb, yb = xa, ya, xb, yb
276
+
277
+ row_img_cropped = row_img.crop((xa, ya, xb, yb))
278
+ row_img_list.append(row_img_cropped)
279
+
280
+ cells_img[k_row + "." + str(row_idx)] = row_img_list
281
+ row_idx += 1
282
+
283
+ return cells_img, len(new_cols), len(new_master_row) - 1
284
+
285
+
286
+ def pytess(cell_pil_img):
287
+ return " ".join(
288
+ pytesseract.image_to_data(
289
+ cell_pil_img,
290
+ output_type=Output.DICT,
291
+ config="-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces",
292
+ )["text"]
293
+ ).strip()
294
+
295
+
296
+ def uniquify(seq, suffs=count(1)):
297
+ """Make all the items unique by adding a suffix (1, 2, etc).
298
+ Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
299
+ `seq` is mutable sequence of strings.
300
+ `suffs` is an optional alternative suffix iterable.
301
+ """
302
+ not_unique = [k for k, v in Counter(seq).items() if v > 1]
303
+
304
+ suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
305
+ for idx, s in enumerate(seq):
306
+ try:
307
+ suffix = str(next(suff_gens[s]))
308
+ except KeyError:
309
+ continue
310
+ else:
311
+ seq[idx] += suffix
312
+
313
+ return seq
314
+
315
+
316
+ def clean_dataframe(df):
317
+ """
318
+ Remove irrelevant symbols that appear with tesseractOCR
319
+ """
320
+ # df.columns = [col.replace('|', '') for col in df.columns]
321
+
322
+ for col in df.columns:
323
+
324
+ df[col] = df[col].str.replace("'", "", regex=True)
325
+ df[col] = df[col].str.replace('"', "", regex=True)
326
+ df[col] = df[col].str.replace("]", "", regex=True)
327
+ df[col] = df[col].str.replace("[", "", regex=True)
328
+ df[col] = df[col].str.replace("{", "", regex=True)
329
+ df[col] = df[col].str.replace("}", "", regex=True)
330
+ df[col] = df[col].str.replace("|", "", regex=True)
331
+ return df
332
+
333
+
334
+ def create_dataframe(cells_pytess_result: list, max_cols: int, max_rows: int, csv_path):
335
+ """Create dataframe using list of cell values of the table, also checks for valid header of dataframe
336
+ Args:
337
+ cells_pytess_result: list of strings, each element representing a cell in a table
338
+ max_cols, max_rows: number of columns and rows
339
+ Returns:
340
+ dataframe : final dataframe after all pre-processing
341
+ """
342
+
343
+ headers = cells_pytess_result[:max_cols]
344
+ new_headers = uniquify(headers, (f" {x!s}" for x in string.ascii_lowercase))
345
+ counter = 0
346
+
347
+ cells_list = cells_pytess_result[max_cols:]
348
+ df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers)
349
+
350
+ cell_idx = 0
351
+ for nrows in range(max_rows):
352
+ for ncols in range(max_cols):
353
+ df.iat[nrows, ncols] = str(cells_list[cell_idx])
354
+ cell_idx += 1
355
+
356
+ ## To check if there are duplicate headers if result of uniquify+col == col
357
+ ## This check removes headers when all headers are empty or if median of header word count is less than 6
358
+ for x, col in zip(string.ascii_lowercase, new_headers):
359
+ if f" {x!s}" == col:
360
+ counter += 1
361
+ header_char_count = [len(col) for col in new_headers]
362
+
363
+ # if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6):
364
+ # st.write('woooot')
365
+ # df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase))
366
+ # df = df.iloc[1:,:]
367
+
368
+ df = clean_dataframe(df)
369
+ # df.to_csv(csv_path)
370
+
371
+ return df
372
+
373
+ def postprocess_dataframes(result_tables):
374
+ """
375
+ Normalize column names
376
+ """
377
+ # df.columns = [col.replace('|', '') for col in df.columns]
378
+ res = {}
379
+ for idx, table_df in enumerate(result_tables):
380
+ result_df = pd.DataFrame()
381
+ for col in table_df.columns:
382
+ if col.lower().startswith("item"):
383
+ result_df["name"] = table_df[col].copy()
384
+ if (
385
+ col.lower().startswith("total")
386
+ or col.lower().startswith("amount")
387
+ or col.lower().startswith("cost")
388
+ ):
389
+ result_df["amount"] = table_df[col].copy()
390
+ print(result_df.columns)
391
+ if len(result_df.columns) == 0:
392
+ result_df["name"] = table_df.iloc[:, 0].copy()
393
+ result_df["amount"] = table_df.iloc[:, 1].copy()
394
+
395
+ result_df["cost_code"] = ""
396
+ res["Table1" + str(idx)] = result_df.to_json(orient="records")
397
+ return res
398
+
399
+
400
+ def process_image(image):
401
+ # if pdf:
402
+ # path_to_pdf = pdf.name
403
+ # # convert PDF to PIL images (one image by page)
404
+ # first_page=True # we want here only the first page as image
405
+ # if first_page: last_page = 1
406
+ # else: last_page = None
407
+ # imgs = pdf2image.convert_from_path(path_to_pdf, last_page=last_page)
408
+ # image = imgs[0]
409
+ TD_THRESHOLD = 0.7
410
+ TSR_THRESHOLD = 0.8
411
+ padd_top = 100
412
+ padd_left = 100
413
+ padd_bottom = 100
414
+ padd_right = 20
415
+ delta_xmin = 0
416
+ delta_ymin = 0
417
+ delta_xmax = 0
418
+ delta_ymax = 0
419
+ expand_rowcol_bbox_top = 0
420
+ expand_rowcol_bbox_bottom = 0
421
+
422
+ image = image.convert("RGB")
423
+ model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=TD_THRESHOLD)
424
+ # plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
425
+ cropped_img_list = crop_tables(
426
+ image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
427
+ )
428
+
429
+ result = []
430
+ for idx, unpadded_table in enumerate(cropped_img_list):
431
+ table = add_padding(
432
+ unpadded_table, padd_top, padd_right, padd_bottom, padd_left
433
+ )
434
+ model, probas, bboxes_scaled = table_struct_recog(
435
+ table, THRESHOLD_PROBA=TSR_THRESHOLD
436
+ )
437
+ rows, cols = generate_structure(
438
+ model,
439
+ table,
440
+ probas,
441
+ bboxes_scaled,
442
+ expand_rowcol_bbox_top,
443
+ expand_rowcol_bbox_bottom,
444
+ )
445
+ rows, cols = sort_table_featuresv2(rows, cols)
446
+ master_row, cols = individual_table_featuresv2(table, rows, cols)
447
+ cells_img, max_cols, max_rows = object_to_cellsv2(
448
+ master_row,
449
+ cols,
450
+ expand_rowcol_bbox_top,
451
+ expand_rowcol_bbox_bottom,
452
+ padd_left,
453
+ )
454
+ sequential_cell_img_list = []
455
+ for k, img_list in cells_img.items():
456
+ for img in img_list:
457
+ sequential_cell_img_list.append(pytess(img))
458
+
459
+ csv_path = "/content/sample_data/table_" + str(idx)
460
+ df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path)
461
+ result.append(df)
462
+ output = postprocess_dataframes(result)
463
+ return output
464
+
465
+
466
+ title = "Interactive demo OCR: microsoft - table-transformer-detection + tesseract"
467
+ description = "Demo for microsoft - table-transformer-detection + tesseract"
468
+ article = "<p style='text-align: center'></p>"
469
+ examples = [["image_0.png"]]
470
+
471
+ iface = gr.Interface(
472
+ fn=process_image,
473
+ inputs=gr.Image(type="pil"),
474
+ outputs="text",
475
+ title=title,
476
+ description=description,
477
+ article=article,
478
+ examples=examples,
479
+ )
480
+ iface.launch(debug=False)
image_0.png ADDED
packages.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ tesseract-ocr
2
+ poppler-utils
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ opencv-python
2
+ pytesseract
3
+ Pillow
4
+ gradio
5
+ timm
6
+ transformers
7
+ numpy
8
+ pandas
9
+ torch
10
+ craft_text_detector
11
+ transformers[sentencepiece]
12
+ pdf2image