Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,121 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
):
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Model and tokenizer loading (with error handling)
|
6 |
+
try:
|
7 |
+
model_name = "google/gemma-3-1b-it" # Correct model name
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_name,
|
11 |
+
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency, if supported
|
12 |
+
device_map="auto", # Automatically use GPU if available, otherwise CPU
|
13 |
+
)
|
14 |
+
# Create the pipeline
|
15 |
+
pipe = pipeline(
|
16 |
+
"text-generation",
|
17 |
+
model=model,
|
18 |
+
tokenizer=tokenizer,
|
19 |
+
torch_dtype=torch.bfloat16, # Make sure pipeline also uses correct dtype
|
20 |
+
device_map="auto", # and device mapping
|
21 |
+
model_kwargs={"attn_implementation": "flash_attention_2"} # Enable Flash Attention 2 if supported by your hardware and transformers version
|
22 |
+
)
|
23 |
|
24 |
+
except Exception as e:
|
25 |
+
error_message = f"Error loading model or tokenizer: {e}"
|
26 |
+
print(error_message) # Log the error to the console
|
27 |
+
# Provide a fallback, even if it's just displaying the error.
|
28 |
+
def error_response(message, history):
|
29 |
+
return f"Model loading failed. Error: {error_message}"
|
30 |
+
|
31 |
+
# Minimal Gradio interface to show the error
|
32 |
+
with gr.Blocks() as demo:
|
33 |
+
gr.ChatInterface(error_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
demo.launch()
|
35 |
+
exit() # Important: exit to prevent running the rest of the (broken) code
|
36 |
+
|
37 |
+
|
38 |
+
# Chat template handling (important for correct prompting)
|
39 |
+
def apply_chat_template(messages, chat_template=None):
|
40 |
+
"""Applies the chat template to the message history.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
messages: A list of dictionaries, where each dictionary has a "role"
|
44 |
+
("user" or "assistant") and "content" key.
|
45 |
+
chat_template: The chat template string (optional). If None,
|
46 |
+
try to get from tokenizer.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
A single string representing the formatted conversation.
|
50 |
+
"""
|
51 |
+
if chat_template is None:
|
52 |
+
if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
|
53 |
+
chat_template = tokenizer.chat_template
|
54 |
+
else:
|
55 |
+
# Fallback to a simple template if no chat template is found. This is
|
56 |
+
# *critical* to prevent the model from generating nonsensical output.
|
57 |
+
chat_template = "{% for message in messages %}" \
|
58 |
+
"{{ '<start_of_turn>' + message['role'] + '\n' + message['content'] + '<end_of_turn>\n' }}" \
|
59 |
+
"{% endfor %}" \
|
60 |
+
"{% if add_generation_prompt %}{{ '<start_of_turn>model\n' }}{% endif %}"
|
61 |
+
|
62 |
+
return tokenizer.apply_chat_template(
|
63 |
+
messages, tokenize=False, add_generation_prompt=True, chat_template=chat_template
|
64 |
+
)
|
65 |
+
|
66 |
+
# Prediction function (modified for chat)
|
67 |
+
def predict(message, history):
|
68 |
+
"""Generates a response to the user's message.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
message: The user's input message (string).
|
72 |
+
history: A list of (user_message, bot_response) tuples representing
|
73 |
+
the conversation history.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
The generated bot response (string).
|
77 |
+
"""
|
78 |
+
# Build the conversation history in the required format.
|
79 |
+
messages = []
|
80 |
+
for user_msg, bot_response in history:
|
81 |
+
messages.append({"role": "user", "content": user_msg})
|
82 |
+
messages.append({"role": "model", "content": bot_response})
|
83 |
+
messages.append({"role": "user", "content": message})
|
84 |
+
|
85 |
+
# Apply the chat template.
|
86 |
+
prompt = apply_chat_template(messages)
|
87 |
+
|
88 |
+
# Generate the response using the pipeline (much cleaner).
|
89 |
+
try:
|
90 |
+
sequences = pipe(
|
91 |
+
prompt,
|
92 |
+
max_new_tokens=512, # Limit response length
|
93 |
+
do_sample=True, # Use sampling for more diverse responses
|
94 |
+
temperature=0.7, # Control randomness (higher = more random)
|
95 |
+
top_k=50, # Top-k sampling
|
96 |
+
top_p=0.95, # Nucleus sampling
|
97 |
+
repetition_penalty=1.2, # Reduce repetition
|
98 |
+
pad_token_id=tokenizer.eos_token_id, # Ensure padding is correct.
|
99 |
+
|
100 |
+
)
|
101 |
+
response = sequences[0]['generated_text'][len(prompt):].strip() # Extract *only* generated text
|
102 |
+
return response
|
103 |
+
|
104 |
+
except Exception as e:
|
105 |
+
return f"An error occurred during generation: {e}"
|
106 |
+
|
107 |
+
|
108 |
+
# Gradio interface (using gr.ChatInterface for a chatbot UI)
|
109 |
+
with gr.Blocks() as demo:
|
110 |
+
gr.ChatInterface(
|
111 |
+
predict,
|
112 |
+
chatbot=gr.Chatbot(height=500), # Set a reasonable height
|
113 |
+
textbox=gr.Textbox(placeholder="Ask me anything!", container=False, scale=7),
|
114 |
+
title="Gemma-3-1b-it Chatbot",
|
115 |
+
description="Chat with the Gemma-3-1b-it model.",
|
116 |
+
retry_btn=None, # Remove redundant buttons
|
117 |
+
undo_btn=None,
|
118 |
+
clear_btn=None,
|
119 |
+
)
|
120 |
+
|
121 |
+
demo.launch(share=False) # Set share=True to create a publicly shareable link
|