|
import torch |
|
import time |
|
import moviepy.editor as mp |
|
import psutil |
|
import gradio as gr |
|
import spaces |
|
from transformers import pipeline |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3" |
|
BATCH_SIZE = 8 |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
if device == "cpu": |
|
DEFAULT_MODEL_NAME = "openai/whisper-tiny" |
|
|
|
def load_pipeline(model_name): |
|
return pipeline( |
|
task="automatic-speech-recognition", |
|
model=model_name, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
pipe = load_pipeline(DEFAULT_MODEL_NAME) |
|
|
|
@spaces.GPU |
|
def transcribe(inputs, task, model_name): |
|
if inputs is None: |
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
|
|
global pipe |
|
if model_name != pipe.model.name_or_path: |
|
pipe = load_pipeline(model_name) |
|
|
|
start_time = time.time() |
|
|
|
|
|
audio = mp.AudioFileClip(inputs) |
|
audio_duration = audio.duration |
|
|
|
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] |
|
end_time = time.time() |
|
|
|
transcription_time = end_time - start_time |
|
|
|
|
|
transcription_time_output = ( |
|
f"Transcription Time: {transcription_time:.2f} seconds\n" |
|
f"Audio Duration: {audio_duration:.2f} seconds\n" |
|
f"Model Used: {model_name}\n" |
|
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}" |
|
) |
|
|
|
return text, transcription_time_output |
|
|
|
from gpustat import GPUStatCollection |
|
|
|
def update_gpu_status(): |
|
if torch.cuda.is_available() == False: |
|
return "No Nviadia Device" |
|
try: |
|
gpu_stats = GPUStatCollection.new_query() |
|
for gpu in gpu_stats: |
|
|
|
gpu_id = gpu.index |
|
gpu_name = gpu.name |
|
gpu_utilization = gpu.utilization |
|
memory_used = gpu.memory_used |
|
memory_total = gpu.memory_total |
|
memory_utilization = (memory_used / memory_total) * 100 |
|
gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%") |
|
return gpu_status |
|
|
|
except Exception as e: |
|
print(f"Error getting GPU stats: {e}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def update_cpu_status(): |
|
import datetime |
|
|
|
current_time = datetime.datetime.now().time() |
|
|
|
time_str = current_time.strftime("%H:%M:%S") |
|
|
|
cpu_percent = psutil.cpu_percent() |
|
cpu_status = f"CPU Usage: {cpu_percent}% {time_str}" |
|
return cpu_status |
|
|
|
def update_status(): |
|
gpu_status = update_gpu_status() |
|
cpu_status = update_cpu_status() |
|
return gpu_status, cpu_status |
|
|
|
def refresh_status(): |
|
return update_status() |
|
|
|
demo = gr.Blocks() |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(type="filepath"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
gr.Textbox( |
|
label="Model Name", |
|
value=DEFAULT_MODEL_NAME, |
|
placeholder="Enter the model name", |
|
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3", |
|
), |
|
], |
|
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")], |
|
theme="huggingface", |
|
title="Whisper Transcription", |
|
description=( |
|
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper" |
|
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
file_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(type="filepath", label="Audio file"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
gr.Textbox( |
|
label="Model Name", |
|
value=DEFAULT_MODEL_NAME, |
|
placeholder="Enter the model name", |
|
info="Some available models: openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v2", |
|
), |
|
], |
|
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")], |
|
theme="huggingface", |
|
title="Whisper Transcription", |
|
description=( |
|
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper" |
|
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
with demo: |
|
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) |
|
|
|
with gr.Row(): |
|
refresh_button = gr.Button("Refresh Status") |
|
|
|
gpu_status_output = gr.Textbox(label="GPU Status", interactive=False) |
|
cpu_status_output = gr.Textbox(label="CPU Status", interactive=False) |
|
|
|
|
|
refresh_button.click(refresh_status, None, [gpu_status_output, cpu_status_output]) |
|
|
|
|
|
demo.load(update_status, inputs=None, outputs=[gpu_status_output, cpu_status_output], every=2, queue=False) |
|
|
|
|
|
demo.launch(share=True) |
|
|