Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -64,6 +64,18 @@ def get_result_df():
|
|
64 |
df = pd.read_csv(CSV_DIR)[COLUMN_NAMES]
|
65 |
df = df.sort_values(by=AVGACC, ascending=False)
|
66 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def prediction_analyse(prediction_content,questiontype_list):
|
68 |
predictions = prediction_content.split("\n")
|
69 |
|
@@ -128,6 +140,8 @@ def add_new_eval(
|
|
128 |
):
|
129 |
if len(model_name_textbox) == 0:
|
130 |
return "Error! Empty model name!", get_result_df()
|
|
|
|
|
131 |
|
132 |
if input_file is None:
|
133 |
return "Error! Empty file!", get_result_df()
|
@@ -144,7 +158,9 @@ def add_new_eval(
|
|
144 |
userdata = content.split('\n')
|
145 |
if len(userdata) != count_lines(GT_PATH):
|
146 |
return f"Error! The number of lines in the submit file ({len(userdata)}) does not match the number of lines in the AUTO-EVAL-VIDEO.json file ({count_lines(GT_PATH)}).", get_result_df()
|
147 |
-
|
|
|
|
|
148 |
prediction = prediction_analyse(content,questiontype)
|
149 |
|
150 |
each_task_accuracy = {i: round(prediction[i]["correct"] / max(1, prediction[i]["total"]) * 100, 1) for i in questiontype}
|
|
|
64 |
df = pd.read_csv(CSV_DIR)[COLUMN_NAMES]
|
65 |
df = df.sort_values(by=AVGACC, ascending=False)
|
66 |
return df
|
67 |
+
|
68 |
+
def check_json(prediction_content):
|
69 |
+
|
70 |
+
predictions = prediction_content.split("\n")
|
71 |
+
for prediction in predictions:
|
72 |
+
try:
|
73 |
+
prediction = json.loads(prediction)
|
74 |
+
except json.JSONDecodeError:
|
75 |
+
print(f"Warning: Skipping invalid JSON data in line: {prediction}")
|
76 |
+
return False
|
77 |
+
return True
|
78 |
+
|
79 |
def prediction_analyse(prediction_content,questiontype_list):
|
80 |
predictions = prediction_content.split("\n")
|
81 |
|
|
|
140 |
):
|
141 |
if len(model_name_textbox) == 0:
|
142 |
return "Error! Empty model name!", get_result_df()
|
143 |
+
if len(model_link) == 0:
|
144 |
+
return "Error! Empty model link!", get_result_df()
|
145 |
|
146 |
if input_file is None:
|
147 |
return "Error! Empty file!", get_result_df()
|
|
|
158 |
userdata = content.split('\n')
|
159 |
if len(userdata) != count_lines(GT_PATH):
|
160 |
return f"Error! The number of lines in the submit file ({len(userdata)}) does not match the number of lines in the AUTO-EVAL-VIDEO.json file ({count_lines(GT_PATH)}).", get_result_df()
|
161 |
+
if not check_json(content):
|
162 |
+
return "JSON DECODE ERROR!", get_result_df()
|
163 |
+
|
164 |
prediction = prediction_analyse(content,questiontype)
|
165 |
|
166 |
each_task_accuracy = {i: round(prediction[i]["correct"] / max(1, prediction[i]["total"]) * 100, 1) for i in questiontype}
|