khanhbdang commited on
Commit
ad03d38
·
verified ·
1 Parent(s): 0d86111

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -60
app.py CHANGED
@@ -1,63 +1,42 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ model_id = "Writer/Palmyra-Med-70B-32k"
5
+
6
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
7
+
8
+ model = AutoModelForCausalLM.from_pretrained(
9
+ model_id,
10
+ torch_dtype=torch.float16,
11
+ device_map="auto",
12
+ attn_implementation="flash_attention_2",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  )
14
 
15
+ messages = [
16
+ {
17
+ "role": "system",
18
+ "content": "You are a highly knowledgeable and experienced expert in the healthcare and biomedical field, possessing extensive medical knowledge and practical expertise.",
19
+ },
20
+ {
21
+ "role": "user",
22
+ "content": "Does danzhi Xiaoyao San ameliorate depressive-like behavior by shifting toward serotonin via the downregulation of hippocampal indoleamine 2,3-dioxygenase?",
23
+ },
24
+ ]
25
+
26
+ input_ids = tokenizer.apply_chat_template(
27
+ messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
28
+ )
29
+
30
+ gen_conf = {
31
+ "max_new_tokens": 256,
32
+ "eos_token_id": [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")],
33
+ "temperature": 0.0,
34
+ "top_p": 0.9,
35
+ }
36
+
37
+ with torch.inference_mode():
38
+ output_id = model.generate(input_ids, **gen_conf)
39
+
40
+ output_text = tokenizer.decode(output_id[0][input_ids.shape[1] :])
41
 
42
+ print(output_text)