File size: 16,652 Bytes
ccadb41 7d45691 ccadb41 7d45691 ccadb41 7d45691 b2419d7 2557959 7d45691 b2419d7 7d45691 b2419d7 7d45691 b2419d7 7d45691 b2419d7 7d45691 4bd1b68 b2419d7 4bd1b68 7d45691 b2419d7 7d45691 4bd1b68 b2419d7 4bd1b68 b2419d7 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 4bd1b68 2557959 7d45691 b2419d7 7d45691 4bd1b68 2557959 4bd1b68 7d45691 4bd1b68 7d45691 4bd1b68 2557959 ccadb41 2557959 7d45691 b2419d7 7d45691 2557959 7d45691 ccadb41 2557959 7d45691 b2419d7 7d45691 ccadb41 7d45691 2557959 7d45691 2557959 7d45691 2557959 7d45691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# Developed by Mohammad Khalooei
# More information and contact: https://github.com/khalooei/LSA
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision.models import vgg16, vgg19, googlenet, resnet18
import timm
import numpy as np
import matplotlib.pyplot as plt
from torchattacks import FGSM, PGD, APGD
import os
import time
from datetime import datetime
import gradio as gr
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(2, 2)
def forward(self, x, return_all=False):
outputs = []
x1 = self.pool(self.relu(self.conv1(x)))
outputs.append(x1)
x2 = self.pool(self.relu(self.conv2(x1)))
outputs.append(x2)
x2_flat = x2.view(-1, 16 * 4 * 4)
x3 = self.relu(self.fc1(x2_flat))
outputs.append(x3)
x4 = self.relu(self.fc2(x3))
outputs.append(x4)
x5 = self.fc3(x4)
outputs.append(x5)
if return_all:
return outputs
else:
return x5
def salt_pepper_noise(images, prob=0.01, device='cuda'):
batch_smap = torch.rand_like(images) < prob / 2
pepper = torch.rand_like(images) < prob / 2
noisy = images.clone()
noisy[batch_smap] = 1.0
noisy[pepper] = 0.0
return torch.clamp(noisy, 0, 1)
def pepper_statistical_noise(images, prob=0.01, device='cuda'):
pepper = torch.rand_like(images) < prob
noisy = images.clone()
noisy[pepper] = 0.0
return torch.clamp(noisy, 0, 1)
def get_layer_outputs(model, input_tensor):
outputs = []
def hook(module, input, output):
outputs.append(output)
hooks = []
for layer in model.modules():
if isinstance(layer, (nn.Conv2d, nn.Linear)):
hooks.append(layer.register_forward_hook(hook))
model.eval()
with torch.no_grad():
model(input_tensor)
for hook in hooks:
hook.remove()
return outputs
def compute_mvl(model, clean_images, adv_images, device='cuda'):
model.eval()
with torch.no_grad():
try:
clean_outputs = model(clean_images, return_all=True)
adv_outputs = model(adv_images, return_all=True)
except TypeError:
clean_outputs = get_layer_outputs(model, clean_images)
adv_outputs = get_layer_outputs(model, adv_images)
mvl_list = []
for clean_out, adv_out in zip(clean_outputs, adv_outputs):
if clean_out.ndim == 4:
diff = torch.norm(clean_out - adv_out, p=2, dim=(1,2,3))
clean_norm = torch.norm(clean_out, p=2, dim=(1,2,3))
else:
diff = torch.norm(clean_out - adv_out, p=2, dim=1)
clean_norm = torch.norm(clean_out, p=2, dim=1)
mvl = diff / (clean_norm + 1e-8)
mvl_list.append(mvl.mean().item())
return mvl_list
def get_model_stats(model):
param_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
layer_count = len([m for m in model.modules() if isinstance(m, (nn.Conv2d, nn.Linear))])
return param_count, layer_count
def modify_model(model, model_name):
if model_name.startswith('VGG'):
model.classifier[6] = nn.Linear(4096, 10)
elif model_name == 'GoogLeNet':
model.fc = nn.Linear(1024, 10)
elif model_name == 'ResNet18':
model.fc = nn.Linear(512, 10)
elif model_name == 'WideResNet':
model.fc = nn.Linear(2048, 10)
elif model_name == 'DenseNet121':
model.classifier = nn.Linear(model.classifier.in_features, 10)
elif model_name == 'MobileNetV2':
if isinstance(model.classifier, nn.Sequential):
model.classifier[1] = nn.Linear(model.classifier[1].in_features, 10)
else:
model.classifier = nn.Linear(model.classifier.in_features, 10)
elif model_name == 'EfficientNet-B0':
model.classifier = nn.Linear(model.classifier.in_features, 10)
return model
def get_models_for_dataset(dataset_name):
if dataset_name == 'MNIST':
return ['LeNet']
elif dataset_name == 'CIFAR-10':
return [
'VGG16', 'VGG19', 'GoogLeNet', 'ResNet18', 'WideResNet',
'DenseNet121', 'MobileNetV2', 'EfficientNet-B0'
]
else:
return []
def get_dataset_and_transform(dataset_name):
if dataset_name == 'MNIST':
transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
else:
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))
])
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
return dataset, transform
def initialize_model(model_name, device):
if model_name == 'LeNet':
model = LeNet()
elif model_name == 'VGG16':
model = modify_model(vgg16(weights='IMAGENET1K_V1'), model_name)
elif model_name == 'VGG19':
model = modify_model(vgg19(weights='IMAGENET1K_V1'), model_name)
elif model_name == 'GoogLeNet':
model = modify_model(googlenet(weights='IMAGENET1K_V1'), model_name)
elif model_name == 'ResNet18':
model = modify_model(resnet18(weights='IMAGENET1K_V1'), model_name)
elif model_name == 'WideResNet':
model = modify_model(timm.create_model('wide_resnet50_2', pretrained=True), model_name)
elif model_name == 'DenseNet121':
model = modify_model(timm.create_model('densenet121', pretrained=True), model_name)
elif model_name == 'MobileNetV2':
model = modify_model(timm.create_model('mobilenetv2_100', pretrained=True), model_name)
elif model_name == 'EfficientNet-B0':
model = modify_model(timm.create_model('efficientnet_b0', pretrained=True), model_name)
else:
raise ValueError(f"Unknown model {model_name}")
return model.to(device)
def layer_sustainability_analysis(dataset_name, model_name, selected_attacks, num_batches, output_dir_base='outputs'):
start_time = time.time()
logs = ["BSM:: experiment is being started ..."]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logs.append(f"Loading {dataset_name} dataset...")
dataset, _ = get_dataset_and_transform(dataset_name)
testloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False)
logs.append(f"{dataset_name} dataset loaded with {len(testloader)} batches.")
logs.append(f"Initializing model {model_name} on {device}...")
model = initialize_model(model_name, device)
logs.append(f"Model {model_name} initialized.")
param_count, layer_count = get_model_stats(model)
logs.append(f"Model stats: Parameters = {param_count}, Layers = {layer_count}")
all_attacks = {
'FGSM': FGSM(model, eps=0.03),
'PGD': PGD(model, eps=0.03, alpha=0.01, steps=40, random_start=True),
'APGD': APGD(model, eps=0.03, steps=100, loss='ce'),
'Salt & Pepper': lambda x, y: salt_pepper_noise(x, prob=0.01, device=device),
'Pepper Statistical': lambda x, y: pepper_statistical_noise(x, prob=0.01, device=device)
}
attacks = {name: attack for name, attack in all_attacks.items() if name in selected_attacks}
if not attacks:
logs.append("Error: No valid attacks selected")
return ["No valid attacks selected", None] + [None]*6 + ["", '\n'.join(logs)]
logs.append(f"Selected attacks: {', '.join(attacks.keys())}")
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
output_dir = os.path.join(output_dir_base, f"{model_name}_{timestamp}")
os.makedirs(output_dir, exist_ok=True)
logs.append(f"Output directory created: {output_dir}")
results = {atk: {'cm': [], 'mvl': []} for atk in attacks}
for i, (images, labels) in enumerate(testloader):
if i >= num_batches:
logs.append(f"Reached batch limit: {num_batches}")
break
images, labels = images.to(device), labels.to(device)
logs.append(f"Processing batch {i+1}/{num_batches}...")
for atk_name, atk in attacks.items():
logs.append(f" Running attack: {atk_name} on batch {i+1}")
adv_images = atk(images, labels)
mvl_vals = compute_mvl(model, images, adv_images, device)
results[atk_name]['mvl'].append(mvl_vals)
batch_cm = np.mean(mvl_vals)
results[atk_name]['cm'].append(batch_cm)
logs.append(f" Attack {atk_name}: batch CM={batch_cm:.6f}")
logs.append("Finished processing batches, computing statistics...")
cm_means = {atk: np.mean(results[atk]['cm']) for atk in attacks}
cm_stds = {atk: np.std(results[atk]['cm']) for atk in attacks}
plt.figure(figsize=(8,6))
attack_names = list(attacks.keys())
means = [cm_means[a] for a in attack_names]
stds = [cm_stds[a] for a in attack_names]
x = np.arange(len(attack_names))
plt.bar(x, means, yerr=stds, capsize=5)
plt.xticks(x, attack_names, rotation=45)
plt.ylabel("CM (Relative Error)")
plt.title(f"CM for {model_name} ({dataset_name})")
plt.tight_layout()
cm_plot_path = os.path.join(output_dir, "cm_plot.png")
plt.savefig(cm_plot_path)
plt.close()
logs.append(f"Saved CM plot: {cm_plot_path}")
mvl_plot_paths = []
colors = ['skyblue', 'lightgreen', 'coral', 'lightgray', 'purple']
for i, atk in enumerate(attack_names):
mvl_arr = np.array(results[atk]['mvl'])
mean_vals = np.mean(mvl_arr, axis=0)
std_vals = np.std(mvl_arr, axis=0)
layers = [f"Layer {j+1}" for j in range(len(mean_vals))]
plt.figure(figsize=(8,6))
plt.plot(layers, mean_vals, marker='o', color=colors[i % len(colors)])
plt.fill_between(layers, mean_vals - std_vals, mean_vals + std_vals, color=colors[i % len(colors)], alpha=0.3)
plt.title(f"MVL per Layer - {atk}")
plt.ylabel("MVL (Mean ± Std)")
plt.xticks(rotation=45)
plt.grid(True)
plt.tight_layout()
path = os.path.join(output_dir, f"mvl_{atk.lower().replace(' ', '_')}.png")
plt.savefig(path)
plt.close()
mvl_plot_paths.append(path)
logs.append(f"Saved MVL plot for {atk}: {path}")
plt.figure(figsize=(10,6))
for i, atk in enumerate(attack_names):
mvl_arr = np.array(results[atk]['mvl'])
mean_vals = np.mean(mvl_arr, axis=0)
std_vals = np.std(mvl_arr, axis=0)
layers = [f"Layer {j+1}" for j in range(len(mean_vals))]
plt.plot(layers, mean_vals, marker='o', color=colors[i % len(colors)], label=atk)
plt.fill_between(layers, mean_vals - std_vals, mean_vals + std_vals, color=colors[i % len(colors)], alpha=0.3)
plt.title(f"Integrated MVL - {model_name}")
plt.ylabel("MVL (Mean ± Std)")
plt.xticks(rotation=45)
plt.legend()
plt.grid(True)
plt.tight_layout()
integrated_mvl_plot_path = os.path.join(output_dir, "integrated_mvl.png")
plt.savefig(integrated_mvl_plot_path)
plt.close()
logs.append(f"Saved integrated MVL plot: {integrated_mvl_plot_path}")
processing_time = time.time() - start_time
logs.append(f"Processing completed in {processing_time:.2f} seconds")
stats = {
'Dataset': dataset_name,
'Model': model_name,
'Parameters': param_count,
'Layers': layer_count,
'Batches': num_batches,
'Attacks': ', '.join(attack_names),
'Time (s)': round(processing_time, 2)
}
stats_text = "## Model Statistics\n\n| Metric | Value |\n|---|---|\n"
for k,v in stats.items():
stats_text += f"| {k} | {v} |\n"
while len(mvl_plot_paths) < 5:
mvl_plot_paths.append(None)
return [
None,
cm_plot_path,
*mvl_plot_paths[:5],
integrated_mvl_plot_path,
stats_text,
'\n'.join(logs)
]
paper_info_html = """
<div style="border: 1px solid #ccc; padding: 15px; border-radius: 8px; margin-bottom: 15px;">
<h2>Layer-wise Regularized Adversarial Training Using Layers Sustainability Analysis Framework</h2>
<h3>Authors</h3>
<p>Mohammad Khalooei, Mohammad Mehdi Homayounpour, Maryam Amirmazlaghani</p>
<h3>Abstract</h3>
<ul>
<li>The layer sustainability analysis (LSA) framework is introduced to evaluate the behavior of layer-level representations of DNNs in dealing with network input perturbations using Lipschitz theoretical concepts.</li>
<li>A layer-wise regularized adversarial training (AT-LR) approach significantly improves the generalization and robustness of different deep neural network architectures for significant perturbations while reducing layer-level vulnerabilities.</li>
<li>AT-LR loss landscapes for each LSA MVL proposal can interpret layer importance for different layers, which is an intriguing aspect.</li>
</ul>
<h3>Links</h3>
<ul>
<li><a href="https://arxiv.org/abs/2202.02626" target="_blank">ArXiv Paper</a></li>
<li><a href="https://github.com/khalooei/LSA" target="_blank">GitHub Repository</a></li>
<li><a href="https://www.sciencedirect.com/science/article/abs/pii/S0925231223002928" target="_blank">ScienceDirect Article</a></li>
</ul>
</div>
"""
def update_models(dataset_name):
if dataset_name == 'MNIST':
return gr.update(visible=False), "LeNet"
else:
models = get_models_for_dataset(dataset_name)
return gr.update(choices=models, value=models[0], visible=True), gr.update(visible=False)
def create_interface():
datasets = ['MNIST', 'CIFAR-10']
attacks = ['FGSM', 'PGD', 'APGD', 'Salt & Pepper', 'Pepper Statistical']
with gr.Blocks() as interface:
gr.Markdown("# Layer-wise Sustainability Analysis")
gr.Markdown(paper_info_html)
initial_input="MNIST"
dataset_input = gr.Dropdown(datasets, label="Select Dataset", value=initial_input)
model_input = gr.Dropdown(get_models_for_dataset(initial_input), value=get_models_for_dataset(initial_input)[0], label="Select Model")
model_text = gr.Textbox(value="LeNet", visible=False, interactive=False, label="Model")
attack_input = gr.CheckboxGroup(choices=attacks, label="Select Attacks", value=attacks)
batch_input = gr.Slider(minimum=1, maximum=20, step=1, value=2, label="Number of Batches")
run_button = gr.Button("Run Analysis")
error_output = gr.Textbox(label="Error", visible=False)
cm_output = gr.Image(label="Comparative Measure (CM)")
with gr.Tabs():
mvl_outputs = []
for attack in attacks:
with gr.Tab(f"MVL: {attack}"):
mvl_output = gr.Image(label=f"MVL for {attack}")
mvl_outputs.append(mvl_output)
with gr.Tab("Integrated MVL"):
integrated_mvl_output = gr.Image(label="Integrated MVL for All Attacks")
with gr.Tab("Model Statistics"):
stats_output = gr.Markdown("## Model Statistics")
with gr.Tab("Logs"):
log_output = gr.Textbox(label="Processing Logs", lines=15, interactive=False)
dataset_input.change(
fn=update_models,
inputs=dataset_input,
outputs=[model_input, model_text]
)
def get_model_for_mnist_or_dropdown(dataset_name, model_name):
return "LeNet" if dataset_name == 'MNIST' else model_name
def run_analysis(dataset_name, model_name, attacks, batches):
real_model = get_model_for_mnist_or_dropdown(dataset_name, model_name)
return layer_sustainability_analysis(dataset_name, real_model, attacks, batches)
run_button.click(
fn=run_analysis,
inputs=[dataset_input, model_input, attack_input, batch_input],
outputs=[error_output, cm_output] + mvl_outputs + [integrated_mvl_output, stats_output, log_output]
)
return interface
if __name__ == '__main__':
interface = create_interface()
interface.launch()
|