File size: 16,652 Bytes
ccadb41
 
 
7d45691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccadb41
7d45691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccadb41
7d45691
 
b2419d7
2557959
7d45691
b2419d7
7d45691
b2419d7
7d45691
b2419d7
7d45691
 
b2419d7
7d45691
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd1b68
 
 
b2419d7
4bd1b68
 
7d45691
 
 
b2419d7
7d45691
 
 
 
4bd1b68
b2419d7
4bd1b68
 
 
b2419d7
 
 
 
 
4bd1b68
 
 
 
 
2557959
 
 
 
4bd1b68
2557959
4bd1b68
 
 
 
 
 
2557959
4bd1b68
 
 
2557959
4bd1b68
 
 
2557959
4bd1b68
2557959
 
4bd1b68
 
 
 
 
 
 
 
 
2557959
4bd1b68
 
2557959
4bd1b68
 
 
2557959
 
 
4bd1b68
 
 
 
 
 
 
 
 
2557959
7d45691
 
b2419d7
7d45691
 
 
 
4bd1b68
 
 
2557959
4bd1b68
7d45691
4bd1b68
7d45691
 
 
4bd1b68
 
 
2557959
ccadb41
2557959
 
 
 
 
 
7d45691
 
 
 
 
b2419d7
7d45691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557959
 
 
 
 
7d45691
 
 
 
 
 
 
 
 
ccadb41
 
 
2557959
 
7d45691
b2419d7
7d45691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccadb41
7d45691
 
 
 
2557959
7d45691
 
2557959
 
 
 
 
 
 
7d45691
2557959
7d45691
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Developed by Mohammad Khalooei
# More information and contact: https://github.com/khalooei/LSA

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision.models import vgg16, vgg19, googlenet, resnet18
import timm
import numpy as np
import matplotlib.pyplot as plt
from torchattacks import FGSM, PGD, APGD
import os
import time
from datetime import datetime
import gradio as gr

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        self.relu = nn.ReLU()
        self.pool = nn.MaxPool2d(2, 2)
    
    def forward(self, x, return_all=False):
        outputs = []
        x1 = self.pool(self.relu(self.conv1(x)))
        outputs.append(x1)
        x2 = self.pool(self.relu(self.conv2(x1)))
        outputs.append(x2)
        x2_flat = x2.view(-1, 16 * 4 * 4)
        x3 = self.relu(self.fc1(x2_flat))
        outputs.append(x3)
        x4 = self.relu(self.fc2(x3))
        outputs.append(x4)
        x5 = self.fc3(x4)
        outputs.append(x5)
        if return_all:
            return outputs
        else:
            return x5

def salt_pepper_noise(images, prob=0.01, device='cuda'):
    batch_smap = torch.rand_like(images) < prob / 2
    pepper = torch.rand_like(images) < prob / 2
    noisy = images.clone()
    noisy[batch_smap] = 1.0
    noisy[pepper] = 0.0
    return torch.clamp(noisy, 0, 1)

def pepper_statistical_noise(images, prob=0.01, device='cuda'):
    pepper = torch.rand_like(images) < prob
    noisy = images.clone()
    noisy[pepper] = 0.0
    return torch.clamp(noisy, 0, 1)

def get_layer_outputs(model, input_tensor):
    outputs = []
    def hook(module, input, output):
        outputs.append(output)
    hooks = []
    for layer in model.modules():
        if isinstance(layer, (nn.Conv2d, nn.Linear)):
            hooks.append(layer.register_forward_hook(hook))
    model.eval()
    with torch.no_grad():
        model(input_tensor)
    for hook in hooks:
        hook.remove()
    return outputs

def compute_mvl(model, clean_images, adv_images, device='cuda'):
    model.eval()
    with torch.no_grad():
        try:
            clean_outputs = model(clean_images, return_all=True)
            adv_outputs = model(adv_images, return_all=True)
        except TypeError:
            clean_outputs = get_layer_outputs(model, clean_images)
            adv_outputs = get_layer_outputs(model, adv_images)

    mvl_list = []
    for clean_out, adv_out in zip(clean_outputs, adv_outputs):
        if clean_out.ndim == 4:
            diff = torch.norm(clean_out - adv_out, p=2, dim=(1,2,3))
            clean_norm = torch.norm(clean_out, p=2, dim=(1,2,3))
        else:
            diff = torch.norm(clean_out - adv_out, p=2, dim=1)
            clean_norm = torch.norm(clean_out, p=2, dim=1)
        mvl = diff / (clean_norm + 1e-8)
        mvl_list.append(mvl.mean().item())
    return mvl_list

def get_model_stats(model):
    param_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
    layer_count = len([m for m in model.modules() if isinstance(m, (nn.Conv2d, nn.Linear))])
    return param_count, layer_count

def modify_model(model, model_name):
    if model_name.startswith('VGG'):
        model.classifier[6] = nn.Linear(4096, 10)
    elif model_name == 'GoogLeNet':
        model.fc = nn.Linear(1024, 10)
    elif model_name == 'ResNet18':
        model.fc = nn.Linear(512, 10)
    elif model_name == 'WideResNet':
        model.fc = nn.Linear(2048, 10)
    elif model_name == 'DenseNet121':
        model.classifier = nn.Linear(model.classifier.in_features, 10)
    elif model_name == 'MobileNetV2':
        if isinstance(model.classifier, nn.Sequential):
            model.classifier[1] = nn.Linear(model.classifier[1].in_features, 10)
        else:
            model.classifier = nn.Linear(model.classifier.in_features, 10)
    elif model_name == 'EfficientNet-B0':
        model.classifier = nn.Linear(model.classifier.in_features, 10)
    return model

def get_models_for_dataset(dataset_name):
    if dataset_name == 'MNIST':
        return ['LeNet']
    elif dataset_name == 'CIFAR-10':
        return [
            'VGG16', 'VGG19', 'GoogLeNet', 'ResNet18', 'WideResNet',
            'DenseNet121', 'MobileNetV2', 'EfficientNet-B0'
        ]
    else:
        return []

def get_dataset_and_transform(dataset_name):
    if dataset_name == 'MNIST':
        transform = transforms.Compose([
            transforms.Resize((28, 28)),
            transforms.Grayscale(num_output_channels=1),
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])
        dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    else:
        transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406),
                                 (0.229, 0.224, 0.225))
        ])
        dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
    return dataset, transform

def initialize_model(model_name, device):
    if model_name == 'LeNet':
        model = LeNet()
    elif model_name == 'VGG16':
        model = modify_model(vgg16(weights='IMAGENET1K_V1'), model_name)
    elif model_name == 'VGG19':
        model = modify_model(vgg19(weights='IMAGENET1K_V1'), model_name)
    elif model_name == 'GoogLeNet':
        model = modify_model(googlenet(weights='IMAGENET1K_V1'), model_name)
    elif model_name == 'ResNet18':
        model = modify_model(resnet18(weights='IMAGENET1K_V1'), model_name)
    elif model_name == 'WideResNet':
        model = modify_model(timm.create_model('wide_resnet50_2', pretrained=True), model_name)
    elif model_name == 'DenseNet121':
        model = modify_model(timm.create_model('densenet121', pretrained=True), model_name)
    elif model_name == 'MobileNetV2':
        model = modify_model(timm.create_model('mobilenetv2_100', pretrained=True), model_name)
    elif model_name == 'EfficientNet-B0':
        model = modify_model(timm.create_model('efficientnet_b0', pretrained=True), model_name)
    else:
        raise ValueError(f"Unknown model {model_name}")
    return model.to(device)

def layer_sustainability_analysis(dataset_name, model_name, selected_attacks, num_batches, output_dir_base='outputs'):
    start_time = time.time()
    logs = ["BSM:: experiment is being started ..."]
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    logs.append(f"Loading {dataset_name} dataset...")
    dataset, _ = get_dataset_and_transform(dataset_name)
    testloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False)
    logs.append(f"{dataset_name} dataset loaded with {len(testloader)} batches.")

    logs.append(f"Initializing model {model_name} on {device}...")
    model = initialize_model(model_name, device)
    logs.append(f"Model {model_name} initialized.")

    param_count, layer_count = get_model_stats(model)
    logs.append(f"Model stats: Parameters = {param_count}, Layers = {layer_count}")

    all_attacks = {
        'FGSM': FGSM(model, eps=0.03),
        'PGD': PGD(model, eps=0.03, alpha=0.01, steps=40, random_start=True),
        'APGD': APGD(model, eps=0.03, steps=100, loss='ce'),
        'Salt & Pepper': lambda x, y: salt_pepper_noise(x, prob=0.01, device=device),
        'Pepper Statistical': lambda x, y: pepper_statistical_noise(x, prob=0.01, device=device)
    }
    attacks = {name: attack for name, attack in all_attacks.items() if name in selected_attacks}
    if not attacks:
        logs.append("Error: No valid attacks selected")
        return ["No valid attacks selected", None] + [None]*6 + ["", '\n'.join(logs)]
    logs.append(f"Selected attacks: {', '.join(attacks.keys())}")

    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    output_dir = os.path.join(output_dir_base, f"{model_name}_{timestamp}")
    os.makedirs(output_dir, exist_ok=True)
    logs.append(f"Output directory created: {output_dir}")

    results = {atk: {'cm': [], 'mvl': []} for atk in attacks}

    for i, (images, labels) in enumerate(testloader):
        if i >= num_batches:
            logs.append(f"Reached batch limit: {num_batches}")
            break
        images, labels = images.to(device), labels.to(device)
        logs.append(f"Processing batch {i+1}/{num_batches}...")

        for atk_name, atk in attacks.items():
            logs.append(f"  Running attack: {atk_name} on batch {i+1}")
            adv_images = atk(images, labels)
            mvl_vals = compute_mvl(model, images, adv_images, device)
            results[atk_name]['mvl'].append(mvl_vals)
            batch_cm = np.mean(mvl_vals)
            results[atk_name]['cm'].append(batch_cm)
            logs.append(f"    Attack {atk_name}: batch CM={batch_cm:.6f}")

    logs.append("Finished processing batches, computing statistics...")

    cm_means = {atk: np.mean(results[atk]['cm']) for atk in attacks}
    cm_stds = {atk: np.std(results[atk]['cm']) for atk in attacks}

    plt.figure(figsize=(8,6))
    attack_names = list(attacks.keys())
    means = [cm_means[a] for a in attack_names]
    stds = [cm_stds[a] for a in attack_names]
    x = np.arange(len(attack_names))
    plt.bar(x, means, yerr=stds, capsize=5)
    plt.xticks(x, attack_names, rotation=45)
    plt.ylabel("CM (Relative Error)")
    plt.title(f"CM for {model_name} ({dataset_name})")
    plt.tight_layout()
    cm_plot_path = os.path.join(output_dir, "cm_plot.png")
    plt.savefig(cm_plot_path)
    plt.close()
    logs.append(f"Saved CM plot: {cm_plot_path}")

    mvl_plot_paths = []
    colors = ['skyblue', 'lightgreen', 'coral', 'lightgray', 'purple']
    for i, atk in enumerate(attack_names):
        mvl_arr = np.array(results[atk]['mvl'])
        mean_vals = np.mean(mvl_arr, axis=0)
        std_vals = np.std(mvl_arr, axis=0)
        layers = [f"Layer {j+1}" for j in range(len(mean_vals))]
        plt.figure(figsize=(8,6))
        plt.plot(layers, mean_vals, marker='o', color=colors[i % len(colors)])
        plt.fill_between(layers, mean_vals - std_vals, mean_vals + std_vals, color=colors[i % len(colors)], alpha=0.3)
        plt.title(f"MVL per Layer - {atk}")
        plt.ylabel("MVL (Mean ± Std)")
        plt.xticks(rotation=45)
        plt.grid(True)
        plt.tight_layout()
        path = os.path.join(output_dir, f"mvl_{atk.lower().replace(' ', '_')}.png")
        plt.savefig(path)
        plt.close()
        mvl_plot_paths.append(path)
        logs.append(f"Saved MVL plot for {atk}: {path}")

    plt.figure(figsize=(10,6))
    for i, atk in enumerate(attack_names):
        mvl_arr = np.array(results[atk]['mvl'])
        mean_vals = np.mean(mvl_arr, axis=0)
        std_vals = np.std(mvl_arr, axis=0)
        layers = [f"Layer {j+1}" for j in range(len(mean_vals))]
        plt.plot(layers, mean_vals, marker='o', color=colors[i % len(colors)], label=atk)
        plt.fill_between(layers, mean_vals - std_vals, mean_vals + std_vals, color=colors[i % len(colors)], alpha=0.3)
    plt.title(f"Integrated MVL - {model_name}")
    plt.ylabel("MVL (Mean ± Std)")
    plt.xticks(rotation=45)
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    integrated_mvl_plot_path = os.path.join(output_dir, "integrated_mvl.png")
    plt.savefig(integrated_mvl_plot_path)
    plt.close()
    logs.append(f"Saved integrated MVL plot: {integrated_mvl_plot_path}")

    processing_time = time.time() - start_time
    logs.append(f"Processing completed in {processing_time:.2f} seconds")

    stats = {
        'Dataset': dataset_name,
        'Model': model_name,
        'Parameters': param_count,
        'Layers': layer_count,
        'Batches': num_batches,
        'Attacks': ', '.join(attack_names),
        'Time (s)': round(processing_time, 2)
    }
    stats_text = "## Model Statistics\n\n| Metric | Value |\n|---|---|\n"
    for k,v in stats.items():
        stats_text += f"| {k} | {v} |\n"

    while len(mvl_plot_paths) < 5:
        mvl_plot_paths.append(None)

    return [
        None,
        cm_plot_path,
        *mvl_plot_paths[:5],
        integrated_mvl_plot_path,
        stats_text,
        '\n'.join(logs)
    ]

paper_info_html = """
<div style="border: 1px solid #ccc; padding: 15px; border-radius: 8px; margin-bottom: 15px;">
  <h2>Layer-wise Regularized Adversarial Training Using Layers Sustainability Analysis Framework</h2>
  <h3>Authors</h3>
  <p>Mohammad Khalooei, Mohammad Mehdi Homayounpour, Maryam Amirmazlaghani</p>

  <h3>Abstract</h3>
  <ul>
    <li>The layer sustainability analysis (LSA) framework is introduced to evaluate the behavior of layer-level representations of DNNs in dealing with network input perturbations using Lipschitz theoretical concepts.</li>
    <li>A layer-wise regularized adversarial training (AT-LR) approach significantly improves the generalization and robustness of different deep neural network architectures for significant perturbations while reducing layer-level vulnerabilities.</li>
    <li>AT-LR loss landscapes for each LSA MVL proposal can interpret layer importance for different layers, which is an intriguing aspect.</li>
  </ul>

  <h3>Links</h3>
  <ul>
    <li><a href="https://arxiv.org/abs/2202.02626" target="_blank">ArXiv Paper</a></li>
    <li><a href="https://github.com/khalooei/LSA" target="_blank">GitHub Repository</a></li>
    <li><a href="https://www.sciencedirect.com/science/article/abs/pii/S0925231223002928" target="_blank">ScienceDirect Article</a></li>
  </ul>
</div>
"""

def update_models(dataset_name):
    if dataset_name == 'MNIST':
        return gr.update(visible=False), "LeNet"
    else:
        models = get_models_for_dataset(dataset_name)
        return gr.update(choices=models, value=models[0], visible=True), gr.update(visible=False)

def create_interface():
    datasets = ['MNIST', 'CIFAR-10']
    attacks = ['FGSM', 'PGD', 'APGD', 'Salt & Pepper', 'Pepper Statistical']

    with gr.Blocks() as interface:
        gr.Markdown("# Layer-wise Sustainability Analysis")
        gr.Markdown(paper_info_html)

        initial_input="MNIST"
        dataset_input = gr.Dropdown(datasets, label="Select Dataset", value=initial_input)
        model_input = gr.Dropdown(get_models_for_dataset(initial_input), value=get_models_for_dataset(initial_input)[0], label="Select Model")
        model_text = gr.Textbox(value="LeNet", visible=False, interactive=False, label="Model")

        attack_input = gr.CheckboxGroup(choices=attacks, label="Select Attacks", value=attacks)
        batch_input = gr.Slider(minimum=1, maximum=20, step=1, value=2, label="Number of Batches")
        run_button = gr.Button("Run Analysis")

        error_output = gr.Textbox(label="Error", visible=False)
        cm_output = gr.Image(label="Comparative Measure (CM)")

        with gr.Tabs():
            mvl_outputs = []
            for attack in attacks:
                with gr.Tab(f"MVL: {attack}"):
                    mvl_output = gr.Image(label=f"MVL for {attack}")
                    mvl_outputs.append(mvl_output)
            with gr.Tab("Integrated MVL"):
                integrated_mvl_output = gr.Image(label="Integrated MVL for All Attacks")
            with gr.Tab("Model Statistics"):
                stats_output = gr.Markdown("## Model Statistics")
            with gr.Tab("Logs"):
                log_output = gr.Textbox(label="Processing Logs", lines=15, interactive=False)

        dataset_input.change(
            fn=update_models,
            inputs=dataset_input,
            outputs=[model_input, model_text]
        )

        def get_model_for_mnist_or_dropdown(dataset_name, model_name):
            return "LeNet" if dataset_name == 'MNIST' else model_name

        def run_analysis(dataset_name, model_name, attacks, batches):
            real_model = get_model_for_mnist_or_dropdown(dataset_name, model_name)
            return layer_sustainability_analysis(dataset_name, real_model, attacks, batches)

        run_button.click(
            fn=run_analysis,
            inputs=[dataset_input, model_input, attack_input, batch_input],
            outputs=[error_output, cm_output] + mvl_outputs + [integrated_mvl_output, stats_output, log_output]
        )

    return interface

if __name__ == '__main__':
    interface = create_interface()
    interface.launch()