Spaces:
Runtime error
Runtime error
testt
Browse files
app.py
CHANGED
@@ -1,43 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from datasets import load_dataset
|
2 |
-
|
3 |
-
|
4 |
-
dataset = load_dataset("MedRAG/textbooks")
|
5 |
-
|
6 |
-
# Preview dataset
|
7 |
-
print(dataset)
|
8 |
-
|
9 |
-
import pandas as pd
|
10 |
-
|
11 |
-
# Convert to Pandas DataFrame
|
12 |
-
df = pd.DataFrame(dataset["train"])
|
13 |
-
|
14 |
-
# Display first rows
|
15 |
-
print(df.head())
|
16 |
-
|
17 |
-
# Check file format
|
18 |
-
print(df.dtypes)
|
19 |
-
|
20 |
import nltk
|
21 |
-
import shutil
|
22 |
-
|
23 |
-
# Supprimer les ressources existantes
|
24 |
-
nltk.data.path.append('/root/nltk_data') # Ajouter le chemin de nltk_data
|
25 |
-
nltk.data.clear_cache() # Effacer le cache des données
|
26 |
-
|
27 |
-
|
28 |
-
# Réinstaller le package 'punkt'
|
29 |
-
nltk.download('all')
|
30 |
-
|
31 |
-
|
32 |
import re
|
33 |
-
import nltk
|
34 |
from nltk.corpus import stopwords
|
35 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
36 |
from nltk.stem import WordNetLemmatizer
|
37 |
|
38 |
-
#
|
39 |
-
nltk.download("stopwords")
|
40 |
nltk.download("punkt")
|
|
|
41 |
nltk.download("wordnet")
|
42 |
nltk.download("omw-1.4")
|
43 |
|
@@ -45,294 +22,121 @@ nltk.download("omw-1.4")
|
|
45 |
stop_words = set(stopwords.words("english"))
|
46 |
lemmatizer = WordNetLemmatizer()
|
47 |
|
48 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def preprocess_text(text):
|
|
|
50 |
text = text.lower() # Convert to lowercase
|
51 |
text = re.sub(r"[^\w\s]", "", text) # Remove special characters
|
52 |
words = word_tokenize(text) # Tokenization
|
53 |
words = [lemmatizer.lemmatize(w) for w in words if w not in stop_words] # Lemmatization & stopword removal
|
54 |
return " ".join(words)
|
55 |
|
56 |
-
#
|
57 |
-
dataset = dataset.map(lambda row: {"cleaned_content": preprocess_text(row["content"])})
|
58 |
-
|
59 |
-
# Step 2: Chunking Function
|
60 |
def chunk_text(text, chunk_size=3):
|
|
|
61 |
sentences = sent_tokenize(text) # Split text into sentences
|
62 |
-
return [" ".join(sentences[i:i+chunk_size]) for i in range(0, len(sentences), chunk_size)]
|
63 |
-
|
64 |
-
# Apply chunking on the cleaned text
|
65 |
-
dataset = dataset.map(lambda row: {"chunks": chunk_text(row["cleaned_content"])})
|
66 |
-
|
67 |
-
from sentence_transformers import SentenceTransformer
|
68 |
-
|
69 |
-
# Load BioBERT or MiniLM for fast embedding
|
70 |
-
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
71 |
-
|
72 |
-
def generate_embedding(row):
|
73 |
-
embedding = embed_model.encode(row["chunks"], convert_to_tensor=False).tolist()
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
dataset = dataset.map(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# Flatten embeddings (convert [[...]] → [...])
|
84 |
-
valid_embeddings = [
|
85 |
-
np.array(row["embedding"]).flatten().tolist() # Ensure each embedding is 1D
|
86 |
-
for row in dataset["train"]
|
87 |
-
if isinstance(row["embedding"], list) and len(row["embedding"]) == 384
|
88 |
-
]
|
89 |
-
|
90 |
-
# Convert to NumPy array
|
91 |
-
embeddings_np = np.array(valid_embeddings, dtype=np.float32)
|
92 |
-
|
93 |
-
# Check shape
|
94 |
-
print("✅ Fixed Embeddings Shape:", embeddings_np.shape) # Expected: (num_samples, 384)
|
95 |
-
|
96 |
-
import numpy as np
|
97 |
-
|
98 |
-
# Flatten embeddings (convert [[...]] → [...])
|
99 |
-
valid_embeddings = [
|
100 |
-
np.array(row["embedding"]).flatten().tolist() # Ensure each embedding is 1D
|
101 |
-
for row in dataset["train"]
|
102 |
-
if isinstance(row["embedding"], list) and len(row["embedding"]) == 384
|
103 |
-
]
|
104 |
-
|
105 |
-
# Convert to NumPy array
|
106 |
-
embeddings_np = np.array(valid_embeddings, dtype=np.float32)
|
107 |
-
|
108 |
-
# Check shape
|
109 |
-
print("✅ Fixed Embeddings Shape:", embeddings_np.shape) # Expected: (num_samples, 384)
|
110 |
-
|
111 |
-
import faiss
|
112 |
-
|
113 |
-
# Check if embeddings are 2D
|
114 |
-
if len(embeddings_np.shape) == 1:
|
115 |
-
embeddings_np = embeddings_np.reshape(1, -1) # Ensure it's (num_samples, embedding_dim)
|
116 |
-
|
117 |
-
# Check final shape
|
118 |
-
print("Fixed Embeddings Shape:", embeddings_np.shape)
|
119 |
|
120 |
# Create FAISS index
|
121 |
-
|
122 |
-
index
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
print("🔍 Available columns:", dataset.column_names) # Should include "chunks"
|
141 |
-
|
142 |
-
medical_texts = dataset["train"]["chunks"] # ✅ Correct way to access chunks
|
143 |
-
# Use the same text that will be encoded
|
144 |
-
|
145 |
-
print("🔍 Dataset structure:", dataset)
|
146 |
-
print("🔍 Available columns in train:", dataset["train"].column_names)
|
147 |
-
print("✅ First 3 chunked texts:", dataset["train"]["chunks"][:3])
|
148 |
-
|
149 |
-
import json
|
150 |
-
id_to_text = {idx: text for idx, text in enumerate(medical_texts)}
|
151 |
-
|
152 |
-
with open("id_to_text.json", "w") as f:
|
153 |
-
json.dump(id_to_text, f)
|
154 |
-
|
155 |
-
import os
|
156 |
-
|
157 |
-
# ✅ Check if file exists
|
158 |
-
if os.path.exists("id_to_text.json"):
|
159 |
-
print("✅ `id_to_text.json` exists!")
|
160 |
-
|
161 |
-
# ✅ Load the JSON file
|
162 |
-
with open("id_to_text.json", "r") as f:
|
163 |
-
id_to_text = json.load(f)
|
164 |
-
|
165 |
-
# ✅ Compare number of records
|
166 |
-
print(f"📊 Records in `id_to_text.json`: {len(id_to_text)}")
|
167 |
-
print(f"📊 Records in `medical_texts`: {len(medical_texts)}")
|
168 |
-
|
169 |
-
if len(id_to_text) == len(medical_texts):
|
170 |
-
print("✅ JSON file contains the correct number of records!")
|
171 |
-
else:
|
172 |
-
print("❌ Mismatch! FAISS ID mapping and dataset size are different.")
|
173 |
-
|
174 |
-
else:
|
175 |
-
print("❌ `id_to_text.json` was not found! Make sure it was saved correctly.")
|
176 |
-
|
177 |
-
import random
|
178 |
-
|
179 |
-
# ✅ Pick 3 random FAISS IDs
|
180 |
-
sample_ids = random.sample(list(id_to_text.keys()), 3)
|
181 |
-
|
182 |
-
# ✅ Print their corresponding texts
|
183 |
-
for faiss_id in sample_ids:
|
184 |
-
print(f"FAISS ID {faiss_id} → Text: {id_to_text[faiss_id][:100]}...") # Show only first 100 chars
|
185 |
-
|
186 |
-
import faiss
|
187 |
-
import numpy as np
|
188 |
-
from sentence_transformers import SentenceTransformer
|
189 |
-
|
190 |
-
# ✅ Load FAISS
|
191 |
-
FAISS_INDEX_PATH = "/content/faiss_medical.index"
|
192 |
-
index = faiss.read_index(FAISS_INDEX_PATH)
|
193 |
-
|
194 |
-
# ✅ Load Sentence Transformer model
|
195 |
-
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
196 |
-
|
197 |
-
# ✅ Test a retrieval query
|
198 |
-
query = "What are the symptoms of pneumonia?"
|
199 |
-
query_embedding = embed_model.encode([query])
|
200 |
-
|
201 |
-
# ✅ Perform FAISS search
|
202 |
-
D, I = index.search(np.array(query_embedding).astype("float32"), 3) # Retrieve top 3 matches
|
203 |
-
|
204 |
-
# ✅ Print the FAISS results & compare with JSON mapping
|
205 |
-
print("🔍 FAISS Search Results:", I[0])
|
206 |
-
print("📏 FAISS Distances:", D[0])
|
207 |
-
|
208 |
-
# ✅ Load `id_to_text.json`
|
209 |
-
with open("id_to_text.json", "r") as f:
|
210 |
-
id_to_text = json.load(f)
|
211 |
-
|
212 |
-
id_to_text = {int(k): v for k, v in id_to_text.items()} # Ensure keys are integers
|
213 |
-
|
214 |
-
# ✅ Print the matching texts
|
215 |
-
for faiss_id in I[0]:
|
216 |
-
print(f"FAISS ID {faiss_id} → Text: {id_to_text[faiss_id][:100]}...") # Show first 100 characters
|
217 |
-
|
218 |
-
import faiss
|
219 |
-
import numpy as np
|
220 |
-
from sentence_transformers import SentenceTransformer
|
221 |
-
import json
|
222 |
-
|
223 |
-
# ✅ Load FAISS index
|
224 |
-
FAISS_INDEX_PATH = "/content/faiss_medical.index"
|
225 |
-
index = faiss.read_index(FAISS_INDEX_PATH)
|
226 |
-
|
227 |
-
# ✅ Load embedding model
|
228 |
-
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
229 |
-
|
230 |
-
# ✅ Load FAISS ID → Text Mapping
|
231 |
-
with open("id_to_text.json", "r") as f:
|
232 |
-
id_to_text = json.load(f)
|
233 |
-
|
234 |
-
# ✅ Convert JSON keys to integers (FAISS returns int IDs)
|
235 |
-
id_to_text = {int(k): v for k, v in id_to_text.items()}
|
236 |
-
|
237 |
-
def retrieve_medical_summary(query, k=3):
|
238 |
-
"""
|
239 |
-
Retrieve the most relevant medical literature from FAISS.
|
240 |
-
|
241 |
-
Args:
|
242 |
-
query (str): The medical question.
|
243 |
-
k (int, optional): Number of closest documents to retrieve. Defaults to 3.
|
244 |
-
|
245 |
-
Returns:
|
246 |
-
str: The most relevant retrieved medical documents.
|
247 |
-
"""
|
248 |
-
# Convert query to embedding
|
249 |
query_embedding = embed_model.encode([query])
|
250 |
-
|
251 |
-
# Perform FAISS search
|
252 |
D, I = index.search(np.array(query_embedding).astype("float32"), k)
|
253 |
-
|
254 |
-
# Retrieve the closest matching text using FAISS index IDs
|
255 |
retrieved_docs = [id_to_text.get(int(idx), "No relevant data found.") for idx in I[0]]
|
256 |
-
|
257 |
-
# ✅ Ensure all retrieved texts are strings (Flatten lists if needed)
|
258 |
retrieved_docs = [doc if isinstance(doc, str) else " ".join(doc) for doc in retrieved_docs]
|
259 |
-
|
260 |
-
# ✅ Join multiple retrieved documents into one response
|
261 |
return "\n\n---\n\n".join(retrieved_docs) if retrieved_docs else "No relevant data found."
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
retrieved_summary = retrieve_medical_summary(query,
|
267 |
-
|
268 |
-
print("📖 Retrieved Medical Summary:\n", retrieved_summary)
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
import os
|
273 |
-
from groq import Groq
|
274 |
-
|
275 |
-
# ✅ Store API Key in Environment Variable
|
276 |
-
os.environ["GROQ_API_KEY"] = "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" # Replace with your actual key
|
277 |
-
|
278 |
-
# ✅ Initialize Groq client correctly (Retrieve API key properly)
|
279 |
-
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
280 |
-
|
281 |
-
def generate_medical_answer_groq(query, model="llama-3.3-70b-versatile", max_tokens=500, temperature=0.3):
|
282 |
-
"""
|
283 |
-
Generates a medical response using Groq's API with LLaMA 3.3-70B, after retrieving relevant literature from FAISS.
|
284 |
-
|
285 |
-
Args:
|
286 |
-
query (str): The patient's medical question.
|
287 |
-
model (str, optional): The model to use. Defaults to "llama-3.3-70b-versatile".
|
288 |
-
max_tokens (int, optional): Max number of tokens to generate. Defaults to 200.
|
289 |
-
temperature (float, optional): Sampling temperature (higher = more creative). Defaults to 0.7.
|
290 |
-
|
291 |
-
Returns:
|
292 |
-
str: The AI-generated medical advice.
|
293 |
-
"""
|
294 |
-
|
295 |
-
# ✅ Retrieve relevant medical literature from FAISS
|
296 |
-
retrieved_summary = retrieve_medical_summary(query)
|
297 |
-
print("\n🔍 Retrieved Medical Text for Query:", query)
|
298 |
-
print(retrieved_summary, "\n")
|
299 |
-
|
300 |
if not retrieved_summary or retrieved_summary == "No relevant data found.":
|
301 |
return "No relevant medical data found. Please consult a healthcare professional."
|
302 |
|
|
|
303 |
try:
|
304 |
-
# ✅ Send request to Groq API
|
305 |
response = client.chat.completions.create(
|
306 |
-
model=
|
307 |
messages=[
|
308 |
{"role": "system", "content": "You are an expert AI specializing in medical knowledge."},
|
309 |
{"role": "user", "content": f"Summarize the following medical literature and provide a structured medical answer:\n\n### Medical Literature ###\n{retrieved_summary}\n\n### Patient Question ###\n{query}\n\n### Medical Advice ###"}
|
310 |
],
|
311 |
-
max_tokens=
|
312 |
-
temperature=
|
313 |
)
|
314 |
-
|
315 |
-
return response.choices[0].message.content.strip() # Ensure clean output
|
316 |
-
|
317 |
except Exception as e:
|
318 |
return f"Error generating response: {str(e)}"
|
319 |
|
320 |
-
#
|
321 |
-
query = "What are the symptoms of pneumonia?"
|
322 |
-
print("🩺 AI-Generated Response:", generate_medical_answer_groq(query))
|
323 |
-
|
324 |
-
# Gradio Interface
|
325 |
def ask_medical_question(question):
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
)
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
import gradio as gr
|
6 |
from datasets import load_dataset
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from groq import Groq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import re
|
|
|
11 |
from nltk.corpus import stopwords
|
12 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
13 |
from nltk.stem import WordNetLemmatizer
|
14 |
|
15 |
+
# Initialize NLTK
|
|
|
16 |
nltk.download("punkt")
|
17 |
+
nltk.download("stopwords")
|
18 |
nltk.download("wordnet")
|
19 |
nltk.download("omw-1.4")
|
20 |
|
|
|
22 |
stop_words = set(stopwords.words("english"))
|
23 |
lemmatizer = WordNetLemmatizer()
|
24 |
|
25 |
+
# Load dataset
|
26 |
+
def load_and_preprocess_dataset():
|
27 |
+
"""Load and preprocess the dataset."""
|
28 |
+
dataset = load_dataset("MedRAG/textbooks")
|
29 |
+
print("Dataset loaded successfully.")
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
# Preprocessing function
|
33 |
def preprocess_text(text):
|
34 |
+
"""Preprocess text by lowercasing, removing special characters, and lemmatizing."""
|
35 |
text = text.lower() # Convert to lowercase
|
36 |
text = re.sub(r"[^\w\s]", "", text) # Remove special characters
|
37 |
words = word_tokenize(text) # Tokenization
|
38 |
words = [lemmatizer.lemmatize(w) for w in words if w not in stop_words] # Lemmatization & stopword removal
|
39 |
return " ".join(words)
|
40 |
|
41 |
+
# Chunking function
|
|
|
|
|
|
|
42 |
def chunk_text(text, chunk_size=3):
|
43 |
+
"""Split text into chunks of sentences."""
|
44 |
sentences = sent_tokenize(text) # Split text into sentences
|
45 |
+
return [" ".join(sentences[i:i + chunk_size]) for i in range(0, len(sentences), chunk_size)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Generate embeddings
|
48 |
+
def generate_embeddings(dataset):
|
49 |
+
"""Generate embeddings for the dataset."""
|
50 |
+
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
51 |
+
dataset = dataset.map(lambda row: {"cleaned_content": preprocess_text(row["content"])})
|
52 |
+
dataset = dataset.map(lambda row: {"chunks": chunk_text(row["cleaned_content"])})
|
53 |
+
dataset = dataset.map(lambda row: {"embedding": embed_model.encode(row["chunks"], convert_to_tensor=False).tolist()})
|
54 |
+
return dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Create FAISS index
|
57 |
+
def create_faiss_index(dataset):
|
58 |
+
"""Create and save a FAISS index for the embeddings."""
|
59 |
+
embeddings_np = np.array([np.array(row["embedding"]).flatten().tolist() for row in dataset["train"]], dtype=np.float32)
|
60 |
+
index = faiss.IndexFlatL2(embeddings_np.shape[1])
|
61 |
+
index.add(embeddings_np)
|
62 |
+
faiss.write_index(index, "faiss_medical.index")
|
63 |
+
print("FAISS index created and saved.")
|
64 |
+
|
65 |
+
# Load FAISS index
|
66 |
+
def load_faiss_index():
|
67 |
+
"""Load the FAISS index."""
|
68 |
+
index = faiss.read_index("faiss_medical.index")
|
69 |
+
print("FAISS index loaded.")
|
70 |
+
return index
|
71 |
+
|
72 |
+
# Retrieve medical summary
|
73 |
+
def retrieve_medical_summary(query, index, id_to_text, k=3):
|
74 |
+
"""Retrieve the most relevant medical literature from FAISS."""
|
75 |
+
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
query_embedding = embed_model.encode([query])
|
|
|
|
|
77 |
D, I = index.search(np.array(query_embedding).astype("float32"), k)
|
|
|
|
|
78 |
retrieved_docs = [id_to_text.get(int(idx), "No relevant data found.") for idx in I[0]]
|
|
|
|
|
79 |
retrieved_docs = [doc if isinstance(doc, str) else " ".join(doc) for doc in retrieved_docs]
|
|
|
|
|
80 |
return "\n\n---\n\n".join(retrieved_docs) if retrieved_docs else "No relevant data found."
|
81 |
|
82 |
+
# Generate medical answer using Groq
|
83 |
+
def generate_medical_answer_groq(query, index, id_to_text):
|
84 |
+
"""Generate a medical response using Groq's API."""
|
85 |
+
retrieved_summary = retrieve_medical_summary(query, index, id_to_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
if not retrieved_summary or retrieved_summary == "No relevant data found.":
|
87 |
return "No relevant medical data found. Please consult a healthcare professional."
|
88 |
|
89 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
90 |
try:
|
|
|
91 |
response = client.chat.completions.create(
|
92 |
+
model="llama-3.3-70b-versatile",
|
93 |
messages=[
|
94 |
{"role": "system", "content": "You are an expert AI specializing in medical knowledge."},
|
95 |
{"role": "user", "content": f"Summarize the following medical literature and provide a structured medical answer:\n\n### Medical Literature ###\n{retrieved_summary}\n\n### Patient Question ###\n{query}\n\n### Medical Advice ###"}
|
96 |
],
|
97 |
+
max_tokens=500,
|
98 |
+
temperature=0.3
|
99 |
)
|
100 |
+
return response.choices[0].message.content.strip()
|
|
|
|
|
101 |
except Exception as e:
|
102 |
return f"Error generating response: {str(e)}"
|
103 |
|
104 |
+
# Gradio interface
|
|
|
|
|
|
|
|
|
105 |
def ask_medical_question(question):
|
106 |
+
"""Gradio interface for asking medical questions."""
|
107 |
+
return generate_medical_answer_groq(question, index, id_to_text)
|
108 |
+
|
109 |
+
# Main function
|
110 |
+
def main():
|
111 |
+
"""Main function to set up the system."""
|
112 |
+
global index, id_to_text
|
113 |
+
|
114 |
+
# Load and preprocess dataset
|
115 |
+
dataset = load_and_preprocess_dataset()
|
116 |
+
dataset = generate_embeddings(dataset)
|
117 |
+
|
118 |
+
# Create FAISS index
|
119 |
+
create_faiss_index(dataset)
|
120 |
+
|
121 |
+
# Load FAISS index
|
122 |
+
index = load_faiss_index()
|
123 |
+
|
124 |
+
# Create ID to text mapping
|
125 |
+
medical_texts = dataset["train"]["chunks"]
|
126 |
+
id_to_text = {idx: text for idx, text in enumerate(medical_texts)}
|
127 |
+
with open("id_to_text.json", "w") as f:
|
128 |
+
json.dump(id_to_text, f)
|
129 |
+
|
130 |
+
# Launch Gradio app
|
131 |
+
iface = gr.Interface(
|
132 |
+
fn=ask_medical_question,
|
133 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your medical question here..."),
|
134 |
+
outputs=gr.Textbox(lines=10, placeholder="AI-generated medical advice will appear here..."),
|
135 |
+
title="Medical Question Answering System",
|
136 |
+
description="Ask any medical question, and the AI will provide an answer based on medical literature."
|
137 |
+
)
|
138 |
+
iface.launch()
|
139 |
+
|
140 |
+
# Run the main function
|
141 |
+
if __name__ == "__main__":
|
142 |
+
main()
|