Spaces:
Runtime error
Runtime error
llama 3
Browse files- app.py +105 -64
- requirements.txt +7 -1
app.py
CHANGED
@@ -1,64 +1,105 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
)
|
59 |
-
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
import gradio as gr
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from groq import Groq
|
8 |
+
|
9 |
+
# Load FAISS index
|
10 |
+
FAISS_INDEX_PATH = "faiss_medical.index"
|
11 |
+
index = faiss.read_index(FAISS_INDEX_PATH)
|
12 |
+
|
13 |
+
# Load embedding model
|
14 |
+
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
15 |
+
|
16 |
+
# Load FAISS ID → Text Mapping
|
17 |
+
with open("id_to_text.json", "r") as f:
|
18 |
+
id_to_text = json.load(f)
|
19 |
+
|
20 |
+
# Convert JSON keys to integers (FAISS returns int IDs)
|
21 |
+
id_to_text = {int(k): v for k, v in id_to_text.items()}
|
22 |
+
|
23 |
+
# Initialize Groq client
|
24 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
25 |
+
|
26 |
+
def retrieve_medical_summary(query, k=3):
|
27 |
+
"""
|
28 |
+
Retrieve the most relevant medical literature from FAISS.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
query (str): The medical question.
|
32 |
+
k (int, optional): Number of closest documents to retrieve. Defaults to 3.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: The most relevant retrieved medical documents.
|
36 |
+
"""
|
37 |
+
# Convert query to embedding
|
38 |
+
query_embedding = embed_model.encode([query])
|
39 |
+
|
40 |
+
# Perform FAISS search
|
41 |
+
D, I = index.search(np.array(query_embedding).astype("float32"), k)
|
42 |
+
|
43 |
+
# Retrieve the closest matching text using FAISS index IDs
|
44 |
+
retrieved_docs = [id_to_text.get(int(idx), "No relevant data found.") for idx in I[0]]
|
45 |
+
|
46 |
+
# Ensure all retrieved texts are strings (Flatten lists if needed)
|
47 |
+
retrieved_docs = [doc if isinstance(doc, str) else " ".join(doc) for doc in retrieved_docs]
|
48 |
+
|
49 |
+
# Join multiple retrieved documents into one response
|
50 |
+
return "\n\n---\n\n".join(retrieved_docs) if retrieved_docs else "No relevant data found."
|
51 |
+
|
52 |
+
def generate_medical_answer_groq(query, model="llama-3.3-70b-versatile", max_tokens=500, temperature=0.3):
|
53 |
+
"""
|
54 |
+
Generates a medical response using Groq's API with LLaMA 3.3-70B, after retrieving relevant literature from FAISS.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
query (str): The patient's medical question.
|
58 |
+
model (str, optional): The model to use. Defaults to "llama-3.3-70b-versatile".
|
59 |
+
max_tokens (int, optional): Max number of tokens to generate. Defaults to 200.
|
60 |
+
temperature (float, optional): Sampling temperature (higher = more creative). Defaults to 0.7.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
str: The AI-generated medical advice.
|
64 |
+
"""
|
65 |
+
|
66 |
+
# Retrieve relevant medical literature from FAISS
|
67 |
+
retrieved_summary = retrieve_medical_summary(query)
|
68 |
+
print("\n🔍 Retrieved Medical Text for Query:", query)
|
69 |
+
print(retrieved_summary, "\n")
|
70 |
+
|
71 |
+
if not retrieved_summary or retrieved_summary == "No relevant data found.":
|
72 |
+
return "No relevant medical data found. Please consult a healthcare professional."
|
73 |
+
|
74 |
+
try:
|
75 |
+
# Send request to Groq API
|
76 |
+
response = client.chat.completions.create(
|
77 |
+
model=model,
|
78 |
+
messages=[
|
79 |
+
{"role": "system", "content": "You are an expert AI specializing in medical knowledge."},
|
80 |
+
{"role": "user", "content": f"Summarize the following medical literature and provide a structured medical answer:\n\n### Medical Literature ###\n{retrieved_summary}\n\n### Patient Question ###\n{query}\n\n### Medical Advice ###"}
|
81 |
+
],
|
82 |
+
max_tokens=max_tokens,
|
83 |
+
temperature=temperature
|
84 |
+
)
|
85 |
+
|
86 |
+
return response.choices[0].message.content.strip() # Ensure clean output
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
return f"Error generating response: {str(e)}"
|
90 |
+
|
91 |
+
# Gradio Interface
|
92 |
+
def ask_medical_question(question):
|
93 |
+
return generate_medical_answer_groq(question)
|
94 |
+
|
95 |
+
# Create Gradio Interface
|
96 |
+
iface = gr.Interface(
|
97 |
+
fn=ask_medical_question,
|
98 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your medical question here..."),
|
99 |
+
outputs=gr.Textbox(lines=10, placeholder="AI-generated medical advice will appear here..."),
|
100 |
+
title="Medical Question Answering System",
|
101 |
+
description="Ask any medical question, and the AI will provide an answer based on medical literature."
|
102 |
+
)
|
103 |
+
|
104 |
+
# Launch the Gradio app
|
105 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers
|
2 |
+
faiss-cpu
|
3 |
+
groq
|
4 |
+
gradio
|
5 |
+
numpy
|
6 |
+
nltk
|
7 |
+
shutil
|