khalednabawi11 commited on
Commit
5eb05ee
·
verified ·
1 Parent(s): 4b49360

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import BlipProcessor, BlipForConditionalGeneration
3
+ from PIL import Image
4
+ import torch
5
+
6
+ # Load model and processor from your Hugging Face repo
7
+ model_id = "khalednabawi11/blip-roco-weights-v2"
8
+
9
+ processor = BlipProcessor.from_pretrained(model_id)
10
+ model = BlipForConditionalGeneration.from_pretrained(model_id)
11
+ model.eval()
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+ model.to(device)
15
+
16
+ def generate_caption(image):
17
+ # Preprocess
18
+ inputs = processor(image, return_tensors="pt").to(device)
19
+
20
+ # Generate caption
21
+ with torch.no_grad():
22
+ output = model.generate(**inputs, max_new_tokens=50)
23
+
24
+ # Decode
25
+ caption = processor.decode(output[0], skip_special_tokens=True)
26
+ return caption
27
+
28
+ # Gradio UI
29
+ demo = gr.Interface(
30
+ fn=generate_caption,
31
+ inputs=gr.Image(type="pil", label="Upload an Image"),
32
+ outputs=gr.Textbox(label="Generated Caption"),
33
+ title="BLIP Medical Caption Generator",
34
+ description="Upload an image and get a caption generated by your fine-tuned BLIP model.",
35
+ examples=["example1.png", "example2.png"] # Optional: add example images in your repo
36
+ )
37
+
38
+ if __name__ == "__main__":
39
+ demo.launch()