File size: 12,283 Bytes
d940f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c1730
775f2c8
a5c1730
 
775f2c8
0c82f40
 
bde5081
0c82f40
4d6e31c
 
 
b058bd9
187480b
d940f83
 
 
bc676ba
 
d940f83
bc676ba
 
ae2daab
 
bde5081
 
 
 
 
 
 
 
 
 
 
bc676ba
 
 
 
 
 
 
 
 
d940f83
 
bc676ba
 
d940f83
b058bd9
bc676ba
d940f83
0b8a0e0
d940f83
80193e3
d940f83
80193e3
 
 
d940f83
 
 
80193e3
d940f83
 
80193e3
bc676ba
d940f83
0c82f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fe2cc
 
 
 
 
4d6e31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc676ba
0c82f40
 
4d6e31c
 
0b8a0e0
29f410d
4d6e31c
 
 
 
 
 
 
 
 
 
 
 
 
 
29f410d
4d6e31c
 
187480b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# import torch
# import asyncio
# import logging
# import signal
# import uvicorn
# import os 

# from fastapi import FastAPI, Request, HTTPException, status
# from pydantic import BaseModel, Field
# from langdetect import detect

# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
# from langchain.vectorstores import Qdrant
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.chains import RetrievalQA
# from langchain.llms import HuggingFacePipeline
# from qdrant_client import QdrantClient
# from langchain.callbacks.base import BaseCallbackHandler
# from huggingface_hub import hf_hub_download
# from contextlib import asynccontextmanager

# # Get environment variables
# COLLECTION_NAME = "arabic_rag_collection"
# QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
# QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")

# # === LOGGING === #
# logging.basicConfig(level=logging.DEBUG)
# logger = logging.getLogger(__name__)

# # Load model and tokenizer
# model_name = "FreedomIntelligence/Apollo-7B"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# tokenizer.pad_token = tokenizer.eos_token


# # FastAPI setup
# app = FastAPI(title="Apollo RAG Medical Chatbot")


# # Generation settings
# generation_config = GenerationConfig(
#     max_new_tokens=150,
#     temperature=0.2,
#     top_k=20,
#     do_sample=True,
#     top_p=0.7,
#     repetition_penalty=1.3,
# )

# # Text generation pipeline
# llm_pipeline = pipeline(
#     model=model,
#     tokenizer=tokenizer,
#     task="text-generation",
#     generation_config=generation_config,
#     device=model.device.index if model.device.type == "cuda" else -1
# )

# llm = HuggingFacePipeline(pipeline=llm_pipeline)

# # Connect to Qdrant + embedding
# embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
# qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)

# vector_store = Qdrant(
#     client=qdrant_client,
#     collection_name=COLLECTION_NAME,
#     embeddings=embedding
# )

# retriever = vector_store.as_retriever(search_kwargs={"k": 3})

# # Set up RAG QA chain
# qa_chain = RetrievalQA.from_chain_type(
#     llm=llm,
#     retriever=retriever,
#     chain_type="stuff"
# )

# class Query(BaseModel):
#     question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)

# class TimeoutCallback(BaseCallbackHandler):
#     def __init__(self, timeout_seconds: int = 60):
#         self.timeout_seconds = timeout_seconds
#         self.start_time = None

#     async def on_llm_start(self, *args, **kwargs):
#         self.start_time = asyncio.get_event_loop().time()

#     async def on_llm_new_token(self, *args, **kwargs):
#         if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
#             raise TimeoutError("LLM processing timeout")


# # def generate_prompt(question: str) -> str:
# #     lang = detect(question)
# #     if lang == "ar":
# #         return (
# #             "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
# #             "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
# #             "- وضوح وسلاسة كل نقطة\n"
# #             "- تجنب الحشو والعبارات الزائدة\n"
# #             f"\nالسؤال: {question}\nالإجابة:"
# #         )
# #     else:
# #         return (
# #             "Answer the following medical question in clear English with a detailed, non-redundant response. "
# #             "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
# #             "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
# #             "in concise and distinct bullet points:\n"
# #             f"Question: {question}\nAnswer:"
# #         )

# def generate_prompt(question):
#     lang = detect(question)
#     if lang == "ar":
#         return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. 
#  وتأكد من ان:
# - عدم تكرار أي نقطة أو عبارة أو كلمة
# - وضوح وسلاسة كل نقطة
# - تجنب الحشو والعبارات الزائدة-

# السؤال: {question}
# الإجابة:
# """
        
#     else:
#         return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
# Question: {question}
# Answer:"""

# # === ROUTES === #
# @app.get("/")
# async def root():
#     return {"message": "Medical QA API is running!"}

# @app.post("/ask")
# async def ask(query: Query):
#     try:
#         logger.debug(f"Received question: {query.question}")
#         prompt = generate_prompt(query.question)
#         timeout_callback = TimeoutCallback(timeout_seconds=60)

#         # docs = retriever.get_relevant_documents(query.question)
#         # if not docs:
#         #     logger.warning("No documents retrieved from Qdrant for the question.")
#         # else:
#         #     logger.debug(f"Retrieved documents: {[doc.page_content for doc in docs[:1]]}")

#         loop = asyncio.get_event_loop()
        
#         answer = await asyncio.wait_for(
#             # qa_chain.run(prompt, callbacks=[timeout_callback]),
#             loop.run_in_executor(None, qa_chain.run, prompt),
#             timeout=360
#         )

#         if not answer:
#             raise ValueError("Empty answer returned from model")

#         if 'Answer:' in answer:
#             response_text = answer.split('Answer:')[-1].strip()
#         elif 'الإجابة:' in answer:
#             response_text = answer.split('الإجابة:')[-1].strip()
#         else:
#             response_text = answer.strip()

        
#         return {
#             "status": "success",
#             "answer": answer,
#             "response": response_text,
#             "language": detect(query.question)
#         }

#     except TimeoutError as te:
#         logger.error("Request timed out", exc_info=True)
#         raise HTTPException(
#             status_code=status.HTTP_504_GATEWAY_TIMEOUT,
#             detail={"status": "error", "message": "Request timed out", "error": str(te)}
#         )

#     except Exception as e:
#         logger.error(f"Unexpected error: {e}", exc_info=True)
#         raise HTTPException(
#             status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
#             detail={"status": "error", "message": "Internal server error", "error": str(e)}
#         )

# @app.post("/chat")
# def chat(query: Query):

#     prompt = generate_prompt(query.question)

#     answer = qa_chain.run(prompt)

#     return {

#         "answer": answer
#     }

    

# # === ENTRYPOINT === #
# if __name__ == "__main__":
#     def handle_exit(signum, frame):
#         print("Shutting down gracefully...")
#         exit(0)

#     signal.signal(signal.SIGINT, handle_exit)
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=8000)



from langdetect import detect
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, GenerationConfig
import torch
import logging
from fastapi import FastAPI, Request, HTTPException, status
from pydantic import BaseModel, Field
import time
import asyncio
from concurrent.futures import ThreadPoolExecutor
from fastapi.middleware.cors import CORSMiddleware

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load model and tokenizer
model_name = "FreedomIntelligence/Apollo-7B"
# model_name = "emilyalsentzer/Bio_ClinicalBERT"
# model_name = "FreedomIntelligence/Apollo-2B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

tokenizer.pad_token = tokenizer.eos_token

app = FastAPI(title="Apollo RAG Medical Chatbot")

# Add this after creating the `app`
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allow all origins
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)



generation_config = GenerationConfig(
    max_new_tokens=150,
    temperature=0.2,
    top_k=20,
    do_sample=True,
    top_p=0.7,
    repetition_penalty=1.3,
)

# Create generation pipeline
pipe = TextGenerationPipeline(
    model=model,
    tokenizer=tokenizer,
    device=model.device.index if torch.cuda.is_available() else "cpu"
)

# Prompt formatter based on language
def generate_prompt(message):
    lang = detect(message)
    if lang == "ar":
        return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
 وتأكد من ان:
- عدم تكرار أي نقطة أو عبارة أو كلمة
- وضوح وسلاسة كل نقطة
- تجنب الحشو والعبارات الزائدة
السؤال: {message}
الإجابة:"""
    else:
        return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas or restate the question. If information is missing, rely on your prior medical knowledge:
Question: {message}
Answer:"""

# Chat function
# @app.post("/ask")
# def chat_fn(message):
#     prompt = generate_prompt(message)
#     response = pipe(prompt,
#                     max_new_tokens=512,
#                     temperature=0.7,
#                     do_sample = True,
#                     top_p=0.9)[0]['generated_text']
#     answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
#     return {"Answer": answer}

executor = ThreadPoolExecutor()

# Define request model
class Query(BaseModel):
    message: str

@app.get("/")
def read_root():
    return {"message": "Apollo Medical Chatbot API is running"}


# @app.post("/ask")
# async def chat_fn(query: Query):
    
#     message = query.message
#     logger.info(f"Received message: {message}")
    
#     prompt = generate_prompt(message)

#     # Run blocking inference in thread
#     loop = asyncio.get_event_loop()
#     response = await loop.run_in_executor(executor,
#                                           lambda: pipe(prompt, max_new_tokens=512, temperature=0.7, do_sample=True, top_p=0.9)[0]['generated_text'])

#     # Parse answer
#     answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
#     return {"Answer": answer}

@app.post("/ask")
async def chat_fn(query: Query):
    message = query.message
    logger.info(f"Received message: {message}")
    
    prompt = generate_prompt(message)

    try:
        start_time = time.time()
        
        loop = asyncio.get_event_loop()
        response = await loop.run_in_executor(
            executor,
            lambda: pipe(prompt, max_new_tokens=150, temperature=0.7, do_sample=True, top_p=0.9)[0]['generated_text']
        )
        
        duration = time.time() - start_time
        logger.info(f"Model inference completed in {duration:.2f} seconds")

        logger.info(f"Generated answer: {answer}")
        return {"Answer": answer}

    except Exception as e:
        logger.error(f"Inference failed: {str(e)}")
        raise HTTPException(status_code=500, detail="Model inference TimeOut failed.")