Spaces:
Sleeping
Sleeping
File size: 12,179 Bytes
8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 801fe7c 8981e66 d940f83 801fe7c 8981e66 d940f83 801fe7c d940f83 8981e66 801fe7c 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 801fe7c d940f83 801fe7c d940f83 801fe7c 8981e66 d940f83 8981e66 d940f83 8981e66 d940f83 8981e66 0c82f40 8981e66 4d6e31c 8981e66 d940f83 8981e66 d940f83 8981e66 bc676ba 8981e66 ae2daab 8981e66 bde5081 8981e66 bc676ba 8981e66 bc676ba 8981e66 bc676ba 8981e66 0c82f40 8981e66 0c82f40 8981e66 c0fe2cc 8981e66 c0fe2cc 4d6e31c 8981e66 4d6e31c 8981e66 4d6e31c 8981e66 4d6e31c 8981e66 29f410d 8981e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import torch
import asyncio
import logging
import signal
import uvicorn
import os
from fastapi import FastAPI, Request, HTTPException, status
from pydantic import BaseModel, Field
from langdetect import detect
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
from langchain.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from qdrant_client import QdrantClient
from langchain.callbacks.base import BaseCallbackHandler
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager
# Get environment variables
COLLECTION_NAME = "arabic_rag_collection"
QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")
# === LOGGING === #
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load model and tokenizer
model_name = "FreedomIntelligence/Apollo-2B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# FastAPI setup
app = FastAPI(title="Apollo RAG Medical Chatbot")
# Generation settings
generation_config = GenerationConfig(
max_new_tokens=150,
temperature=0.2,
top_k=20,
do_sample=True,
top_p=0.7,
repetition_penalty=1.3,
)
# Text generation pipeline
llm_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
generation_config=generation_config,
device=model.device.index if model.device.type == "cuda" else -1
)
llm = HuggingFacePipeline(pipeline=llm_pipeline)
# Connect to Qdrant + embedding
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
vector_store = Qdrant(
client=qdrant_client,
collection_name=COLLECTION_NAME,
embeddings=embedding
)
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# Set up RAG QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff"
)
class Query(BaseModel):
question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)
class TimeoutCallback(BaseCallbackHandler):
def __init__(self, timeout_seconds: int = 60):
self.timeout_seconds = timeout_seconds
self.start_time = None
async def on_llm_start(self, *args, **kwargs):
self.start_time = asyncio.get_event_loop().time()
async def on_llm_new_token(self, *args, **kwargs):
if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
raise TimeoutError("LLM processing timeout")
# def generate_prompt(question: str) -> str:
# lang = detect(question)
# if lang == "ar":
# return (
# "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
# "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
# "- وضوح وسلاسة كل نقطة\n"
# "- تجنب الحشو والعبارات الزائدة\n"
# f"\nالسؤال: {question}\nالإجابة:"
# )
# else:
# return (
# "Answer the following medical question in clear English with a detailed, non-redundant response. "
# "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
# "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
# "in concise and distinct bullet points:\n"
# f"Question: {question}\nAnswer:"
# )
def generate_prompt(question):
lang = detect(question)
if lang == "ar":
return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
وتأكد من ان:
- عدم تكرار أي نقطة أو عبارة أو كلمة
- وضوح وسلاسة كل نقطة
- تجنب الحشو والعبارات الزائدة-
السؤال: {question}
الإجابة:
"""
else:
return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
Question: {question}
Answer:"""
# === ROUTES === #
@app.get("/")
async def root():
return {"message": "Medical QA API is running!"}
@app.post("/ask")
async def ask(query: Query):
try:
logger.debug(f"Received question: {query.question}")
prompt = generate_prompt(query.question)
timeout_callback = TimeoutCallback(timeout_seconds=60)
# docs = retriever.get_relevant_documents(query.question)
# if not docs:
# logger.warning("No documents retrieved from Qdrant for the question.")
# else:
# logger.debug(f"Retrieved documents: {[doc.page_content for doc in docs[:1]]}")
loop = asyncio.get_event_loop()
response = await asyncio.wait_for(
# qa_chain.run(prompt, callbacks=[timeout_callback]),
loop.run_in_executor(None, qa_chain.run, prompt),
timeout=360
)
if not response:
raise ValueError("Empty answer returned from model")
answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
return {
"status": "success",
"response": response,
"answer": answer,
"language": detect(query.question)
}
except TimeoutError as te:
logger.error("Request timed out", exc_info=True)
raise HTTPException(
status_code=status.HTTP_504_GATEWAY_TIMEOUT,
detail={"status": "error", "message": "Request timed out", "error": str(te)}
)
except Exception as e:
logger.error(f"Unexpected error: {e}", exc_info=True)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"status": "error", "message": "Internal server error", "error": str(e)}
)
@app.post("/chat")
def chat(query: Query):
prompt = generate_prompt(query.question)
response = qa_chain.run(prompt)
answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
return {
"response": response,
"answer": answer
}
# === ENTRYPOINT === #
if __name__ == "__main__":
def handle_exit(signum, frame):
print("Shutting down gracefully...")
exit(0)
signal.signal(signal.SIGINT, handle_exit)
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
# from langdetect import detect
# from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, GenerationConfig
# import torch
# import logging
# from fastapi import FastAPI, Request, HTTPException, status
# from pydantic import BaseModel, Field
# import time
# import asyncio
# from concurrent.futures import ThreadPoolExecutor
# from fastapi.middleware.cors import CORSMiddleware
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Load model and tokenizer
# model_name = "FreedomIntelligence/Apollo-7B"
# # model_name = "emilyalsentzer/Bio_ClinicalBERT"
# # model_name = "FreedomIntelligence/Apollo-2B"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# tokenizer.pad_token = tokenizer.eos_token
# app = FastAPI(title="Apollo RAG Medical Chatbot")
# # Add this after creating the `app`
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"], # Allow all origins
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# generation_config = GenerationConfig(
# max_new_tokens=150,
# temperature=0.2,
# top_k=20,
# do_sample=True,
# top_p=0.7,
# repetition_penalty=1.3,
# )
# # Create generation pipeline
# pipe = TextGenerationPipeline(
# model=model,
# tokenizer=tokenizer,
# device=model.device.index if torch.cuda.is_available() else "cpu"
# )
# # Prompt formatter based on language
# def generate_prompt(message):
# lang = detect(message)
# if lang == "ar":
# return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
# وتأكد من ان:
# - عدم تكرار أي نقطة أو عبارة أو كلمة
# - وضوح وسلاسة كل نقطة
# - تجنب الحشو والعبارات الزائدة
# السؤال: {message}
# الإجابة:"""
# else:
# return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas or restate the question. If information is missing, rely on your prior medical knowledge:
# Question: {message}
# Answer:"""
# # Chat function
# # @app.post("/ask")
# # def chat_fn(message):
# # prompt = generate_prompt(message)
# # response = pipe(prompt,
# # max_new_tokens=512,
# # temperature=0.7,
# # do_sample = True,
# # top_p=0.9)[0]['generated_text']
# # answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
# # return {"Answer": answer}
# executor = ThreadPoolExecutor()
# # Define request model
# class Query(BaseModel):
# message: str
# @app.get("/")
# def read_root():
# return {"message": "Apollo Medical Chatbot API is running"}
# # @app.post("/ask")
# # async def chat_fn(query: Query):
# # message = query.message
# # logger.info(f"Received message: {message}")
# # prompt = generate_prompt(message)
# # # Run blocking inference in thread
# # loop = asyncio.get_event_loop()
# # response = await loop.run_in_executor(executor,
# # lambda: pipe(prompt, max_new_tokens=512, temperature=0.7, do_sample=True, top_p=0.9)[0]['generated_text'])
# # # Parse answer
# # answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
# # return {"Answer": answer}
# @app.post("/ask")
# async def chat_fn(query: Query):
# message = query.message
# logger.info(f"Received message: {message}")
# prompt = generate_prompt(message)
# try:
# start_time = time.time()
# loop = asyncio.get_event_loop()
# response = await loop.run_in_executor(
# executor,
# lambda: pipe(prompt, max_new_tokens=150, temperature=0.7, do_sample=True, top_p=0.9)[0]['generated_text']
# )
# duration = time.time() - start_time
# logger.info(f"Model inference completed in {duration:.2f} seconds")
# logger.info(f"Generated answer: {answer}")
# return {"Answer": answer}
# except Exception as e:
# logger.error(f"Inference failed: {str(e)}")
# raise HTTPException(status_code=500, detail="Model inference TimeOut failed.")
|