kevinwang676's picture
Upload folder using huggingface_hub
cfdc687
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright (c) 2021 Kazuhiro KOBAYASHI <root.4mac@gmail.com>
#
# Distributed under terms of the MIT license.
"""
"""
import joblib
import torch
import torch.nn as nn
from .layer import Conv1d, ConvLayers
from .module import CCepLTVFilter, SinusoidsGenerator
from .preprocess import LogMelSpectrogram2LogMagnitude, LogMelSpectrogramScaler
class NeuralHomomorphicVocoder(nn.Module):
fs = 24000
fft_size = 1024
hop_size = 256
in_channels = 80
conv_channels = 256
ccep_size = 222
out_channels = 1
kernel_size = 3
dilation_size = 1
group_size = 8
fmin = 80
fmax = 7600
roll_size = 24
n_ltv_layers = 3
n_postfilter_layers = 4
n_ltv_postfilter_layers = 1
harmonic_amp = 0.1
noise_std = 0.03
use_causal = False
use_reference_mag = False
use_tanh = False
use_uvmask = True
use_weight_norm = True
conv_type = "original"
postfilter_type = None
ltv_postfilter_type = None
ltv_postfilter_kernel_size = 128
scaler_file = None
def __init__(self, **kwargs):
super().__init__()
for k, v in kwargs.items():
if k not in self.__class__.__dict__.keys():
raise ValueError(f"{k} not in arguments {self.__class__}.")
setattr(self, k, v)
# load scaler
self.feat_scaler_fn = self._load_feat_scaler(self.scaler_file, ext="mlfb")
# feat to linear spectrogram if use_reference_mag
self.feat2linear_fn = self._get_feat2linear_fn(ext="mlfb")
# impulse generator
self.impulse_generator = SinusoidsGenerator(
hop_size=self.hop_size,
fs=self.fs,
harmonic_amp=self.harmonic_amp,
use_uvmask=self.use_uvmask,
)
# LTV modules
self.ltv_params = self._get_ltv_params()
self.ltv_harmonic = CCepLTVFilter(
**self.ltv_params, feat2linear_fn=self.feat2linear_fn
)
self.ltv_noise = CCepLTVFilter(**self.ltv_params)
# post filter
self.postfilter_fn = self._get_postfilter_fn()
if self.use_weight_norm:
self._apply_weight_norm()
def forward(self, z, x, cf0):
"""
z: (B, 1, T * hop_size)
x: (B, T, D) ## D is the total dimension, including loudness, PPGs and spk_embs.
cf0: (B, T, 1) ## frame-level pitch
### uv: (B, T, 1) ## frame-level uv symbols, u is 0 and v is 1.
"""
if self.feat_scaler_fn is not None:
x = self.feat_scaler_fn(x)
harmonic = self.impulse_generator(cf0)
sig_harm = self.ltv_harmonic(x, harmonic)
sig_noise = self.ltv_noise(x, z)
y = sig_harm + sig_noise
if self.postfilter_fn is not None:
y = self.postfilter_fn(y.transpose(1, 2)).transpose(1, 2)
y = torch.tanh(y) if self.use_tanh else torch.clamp(y, -1, 1)
y = y.reshape(x.size(0), self.out_channels, -1)
return harmonic, y
@torch.no_grad()
def inference(self, c):
"""Interface for PWG decoder
c: (T, D)
"""
c = c.unsqueeze(0)
z = torch.normal(0, self.noise_std, (1, c.size(1) * self.hop_size)).to(c.device)
x, cf0, uv = torch.split(c, [self.in_channels, 1, 1], dim=-1)
y = self._forward(z, x, cf0, uv)
return y.squeeze(0)
def remove_weight_norm(self):
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError:
return
self.apply(_remove_weight_norm)
def _apply_weight_norm(self):
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def _get_ltv_params(self):
return {
"in_channels": self.in_channels,
"conv_channels": self.conv_channels,
"ccep_size": self.ccep_size,
"kernel_size": self.kernel_size,
"dilation_size": self.dilation_size,
"group_size": self.group_size,
"fft_size": self.fft_size,
"hop_size": self.hop_size,
"n_ltv_layers": self.n_ltv_layers,
"n_ltv_postfilter_layers": self.n_ltv_postfilter_layers,
"use_causal": self.use_causal,
"conv_type": self.conv_type,
"ltv_postfilter_type": self.ltv_postfilter_type,
"ltv_postfilter_kernel_size": self.ltv_postfilter_kernel_size,
}
@staticmethod
def _load_feat_scaler(scaler_file, ext="mlfb"):
if scaler_file is not None:
if ext == "mlfb":
fn = LogMelSpectrogramScaler(joblib.load(scaler_file)[ext])
elif ext == "lsp":
fn = None
raise NotImplementedError("lsp scaler is not implemented.")
else:
fn = None
return fn
def _get_feat2linear_fn(self, ext="mlfb"):
if self.use_reference_mag:
if ext == "mlfb":
fn = LogMelSpectrogram2LogMagnitude(
fs=self.fs,
fft_size=self.fft_size,
n_mels=self.in_channels,
fmin=self.fmin,
fmax=self.fmax,
roll_size=self.roll_size,
melspc_scaler_fn=self.feat_scaler_fn,
)
elif ext == "lsp":
fn = None
raise NotImplementedError("lsp to linear is not implemented.")
else:
fn = None
return fn
def _get_postfilter_fn(self):
if self.postfilter_type == "ddsconv":
fn = ConvLayers(
in_channels=1,
conv_channels=64,
out_channels=1,
kernel_size=5,
dilation_size=2,
n_conv_layers=self.n_postfilter_layers,
use_causal=self.use_causal,
conv_type="ddsconv",
)
elif self.postfilter_type == "conv":
fn = Conv1d(
in_channels=1,
out_channels=1,
kernel_size=self.fft_size,
use_causal=self.use_causal,
)
elif self.postfilter_type is None:
fn = None
else:
raise ValueError(f"Invalid postfilter_type: {self.postfilter_type}")
return fn