Spaces:
Configuration error
Configuration error
File size: 10,699 Bytes
cfdc687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright (c) 2021 Kazuhiro KOBAYASHI <root.4mac@gmail.com>
#
# Distributed under terms of the MIT license.
"""
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .layer import ConvLayers, DFTLayer
from .model import NeuralHomomorphicVocoder
from .module import CCepLTVFilter, SinusoidsGenerator
class IncrementalCacheConvClass(nn.Module):
def __init__(self):
super().__init__()
# remain handles to remove old hooks
self.handles = []
def _forward_without_cache(self, x):
raise NotImplementedError("Please implement _forward_without_cache")
def forward(self, caches, *inputs):
self.caches = caches
self.new_caches = []
self.cache_num = 0
x = self._forward(*inputs)
return x, self.new_caches
def reset_caches(self, *args, hop_size=128, batch_size=1):
self.caches = []
self.receptive_sizes = []
self._initialize_caches(batch_size=batch_size, hop_size=hop_size)
# set ordering hook
self._set_pre_hooks(cache_ordering=True)
# caclulate order of inference
_ = self._forward_without_cache(*args)
# remove hook handles for ordering
[h.remove() for h in self.handles]
# set concatenate hook
self._set_pre_hooks(cache_ordering=False)
# make cache zeros
self.caches = [torch.zeros_like(c) for c in self.caches]
# remove conv padding
self._remove_padding()
return self.caches
def _initialize_caches(self, batch_size=1, hop_size=128):
self.caches_dict = {}
self.receptive_sizes_dict = {}
for k, m in self.named_modules():
if isinstance(m, nn.Conv1d):
if m.kernel_size[0] > 1:
receptive_size = self._get_receptive_size_1d(m)
# NOTE(k2kobayashi): postfilter_fn requires to accept
# hop_size length input
if "postfilter_fn" in k:
receptive_size += hop_size - 1
self.caches_dict[id(m)] = torch.randn(
(batch_size, m.in_channels, receptive_size)
)
self.receptive_sizes_dict[id(m)] = receptive_size
def _set_pre_hooks(self, cache_ordering=True):
if cache_ordering:
func = self._cache_ordering
else:
func = self._concat_cache
for k, m in self.named_modules():
if isinstance(m, nn.Conv1d):
if m.kernel_size[0] > 1:
self.handles.append(m.register_forward_pre_hook(func))
def _concat_cache(self, module, inputs):
def __concat_cache(inputs, cache, receptive_size):
inputs = torch.cat([cache, inputs[0]], axis=-1)
inputs = inputs[..., -receptive_size:]
return inputs
cache = self.caches[self.cache_num]
receptive_size = self.receptive_sizes[self.cache_num]
inputs = __concat_cache(inputs, cache, receptive_size)
self.new_caches += [inputs]
self.cache_num += 1
return inputs
def _cache_ordering(self, module, inputs):
self.caches.append(self.caches_dict[id(module)])
self.receptive_sizes.append(self.receptive_sizes_dict[id(module)])
def _remove_padding(self):
def __remove_padding(m):
if isinstance(m, torch.nn.Conv1d):
m.padding = (0,)
if isinstance(m, torch.nn.Conv2d):
m.padding = (0, 0)
self.apply(__remove_padding)
@staticmethod
def _get_receptive_size_1d(m):
return (m.kernel_size[0] - 1) * m.dilation[0] + 1
class IncrementalNeuralHomomorphicVocoder(
NeuralHomomorphicVocoder, IncrementalCacheConvClass
):
fs = 24000
fft_size = 1024
hop_size = 256
in_channels = 80
conv_channels = 256
ccep_size = 222
out_channels = 1
kernel_size = 3
dilation_size = 1
group_size = 8
fmin = 80
fmax = 7600
roll_size = 24
n_ltv_layers = 3
n_postfilter_layers = 4
n_ltv_postfilter_layers = 1
use_causal = False
use_reference_mag = False
use_tanh = False
use_uvmask = False
use_weight_norm = True
conv_type = "original"
postfilter_type = "ddsconv"
ltv_postfilter_type = "conv"
ltv_postfilter_kernel_size = 128
scaler_file = None
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert kwargs["use_causal"], "Require use_causal"
self.impulse_generator = IncrementalSinusoidsGenerator(
hop_size=self.hop_size, fs=self.fs, use_uvmask=self.use_uvmask
)
self.ltv_harmonic = IncrementalCCepLTVFilter(
**self.ltv_params, feat2linear_fn=self.feat2linear_fn
)
self.ltv_noise = IncrementalCCepLTVFilter(**self.ltv_params)
self.window_size = self.ltv_harmonic.window_size
def _forward_without_cache(self, *inputs):
super()._forward(*inputs)
def forward(self, z, x, f0, uv, ltv_caches, conv_caches):
self.caches = conv_caches
self.new_caches = []
self.cache_num = 0
y, new_ltv_caches = self._incremental_forward(z, x, f0, uv, ltv_caches)
return y, new_ltv_caches, self.new_caches
def _incremental_forward(self, z, x, cf0, uv, ltv_caches):
if self.feat_scaler_fn is not None:
x = self.feat_scaler_fn(x)
# impulse
impulse, impulse_cache = self.impulse_generator.incremental_forward(
cf0, uv, ltv_caches[0]
)
# ltv for harmonic
harmonic = self._concat_ltv_input_cache(ltv_caches[1], impulse)
ltv_harm = self.ltv_harmonic.incremental_forward(x, harmonic)
sig_harm = ltv_caches[2][..., -self.hop_size :] + ltv_harm[..., : self.hop_size]
if self.ltv_harmonic.ltv_postfilter_fn is not None:
sig_harm = self.ltv_harmonic.ltv_postfilter_fn(
sig_harm.transpose(1, 2)
).transpose(1, 2)
# ltv for noise
noise = self._concat_ltv_input_cache(ltv_caches[3], z)
ltv_noise = self.ltv_noise.incremental_forward(x, noise)
sig_noise = (
ltv_caches[4][..., -self.hop_size :] + ltv_noise[..., : self.hop_size]
)
if self.ltv_noise.ltv_postfilter_fn is not None:
sig_noise = self.ltv_noise.ltv_postfilter_fn(
sig_noise.transpose(1, 2)
).transpose(1, 2)
# superimpose
y = sig_harm + sig_noise
if self.postfilter_fn is not None:
y = self.postfilter_fn(y.transpose(1, 2)).transpose(1, 2)
y = torch.tanh(y) if self.use_tanh else torch.clamp(y, -1, 1)
new_ltv_caches = [impulse_cache, harmonic, ltv_harm, noise, ltv_noise]
return y.reshape(1, self.out_channels, -1), new_ltv_caches
def reset_ltv_caches(self):
ltv_caches = []
# impulse generator
ltv_caches += [torch.zeros(1, 1, 1)]
# ltv harm
ltv_caches += [torch.zeros(1, 1, self.window_size)]
ltv_caches += [torch.zeros(1, 1, self.window_size)]
# ltv noise
ltv_caches += [torch.zeros(1, 1, self.window_size)]
ltv_caches += [torch.zeros(1, 1, self.window_size)]
return ltv_caches
def _concat_ltv_input_cache(self, cache, z):
z = torch.cat([cache, z], axis=-1)
z = z[..., self.hop_size :]
return z
class IncrementalSinusoidsGenerator(SinusoidsGenerator):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def incremental_forward(self, cf0, uv, cache):
f0, uv = self.upsample(cf0.transpose(1, 2)), self.upsample(uv.transpose(1, 2))
harmonic, new_cache = self.incremental_generate_sinusoids(f0, uv, cache)
harmonic = self.harmonic_amp * harmonic.reshape(cf0.size(0), 1, -1)
return harmonic, new_cache
def incremental_generate_sinusoids(self, f0, uv, cache):
mask = self.anti_aliacing_mask(f0 * self.harmonics)
# f0[..., 0] = f0[..., 0] + cache
f0 = torch.cat([cache, f0], axis=-1)
cumsum = torch.cumsum(f0, dim=-1)[..., 1:]
rads = cumsum * 2.0 * math.pi / self.fs * self.harmonics
harmonic = torch.sum(torch.cos(rads) * mask, dim=1, keepdim=True)
if self.use_uvmask:
harmonic = uv * harmonic
new_cache = cumsum[..., -1:] % self.fs
return harmonic, new_cache
class IncrementalConvLayers(ConvLayers, IncrementalCacheConvClass):
in_channels = 80
conv_channels = 256
out_channels = 222
kernel_size = 3
dilation_size = 1
group_size = 8
n_conv_layers = 3
use_causal = False
conv_type = "original"
def __init__(self, **kwargs):
for k, v in kwargs.items():
if k not in self.__class__.__dict__.keys():
raise ValueError(f"{k} not in arguments {self.__class__}.")
setattr(self, k, v)
assert kwargs["use_causal"], "Require use_causal"
super().__init__(**kwargs)
def _forward_without_cache(self, *inputs):
super().forward(*inputs)
def forward(self, x, conv_caches):
self.caches = conv_caches
self.new_caches = []
self.cache_num = 0
x = self.conv_layers(x)
return x, self.new_caches
class IncrementalCCepLTVFilter(CCepLTVFilter):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.conv_dft = DFTLayer(n_fft=self.fft_size)
self.conv_idft = DFTLayer(n_fft=self.fft_size + 1)
self.padding = (self.fft_size - self.ccep_size) // 2
def incremental_forward(self, x, z):
"""Input tensor size
x: (1, 1, input_size)
z: (1, 1, fft_size + hop_size)
"""
# inference complex cepstrum
ccep = self.conv(x) / self.quef_norm
log_mag = None if self.feat2linear_fn is None else self.feat2linear_fn(x)
y = self._dft_ccep2impulse(ccep, ref=log_mag)
# convolve to a frame
z = F.pad(z, (self.fft_size // 2, self.fft_size // 2))
z = F.conv1d(z, y)
return z * self.win
def _dft_ccep2impulse(self, ccep, ref=None):
ccep = F.pad(ccep, (self.padding, self.padding))
real, imag = self.conv_dft(ccep)
if ref is not None:
real = self._apply_ref_mag(real, ref)
mag, phase = torch.pow(10, real / 10), imag
real, imag = mag * torch.cos(phase), mag * torch.sin(phase)
real, _ = self.conv_idft(F.pad(real, (0, 1)), F.pad(imag, (0, 1)), inverse=True)
return real
|