import gradio as gr import torch import random from diffusers import DiffusionPipeline from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 MAX_SEED = 2**32 - 1 # --- Model lists ordered by size (light to heavy) --- image_models = { "Stable Diffusion 1.5 (light)": "runwayml/stable-diffusion-v1-5", "Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1", "Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0", "Playground v2": "playgroundai/playground-v2-1024px-aesthetic", "Muse 512": "amused/muse-512-finetuned", "PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS", "Kandinsky 3": "kandinsky-community/kandinsky-3", "BLIP Diffusion": "Salesforce/blipdiffusion", "SDXL Base 1.0 (heavy)": "stabilityai/stable-diffusion-xl-base-1.0", "OpenJourney (heavy)": "prompthero/openjourney" } text_models = { "GPT-2 (light)": "gpt2", "GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B", "BLOOM 1.1B": "bigscience/bloom-1b1", "GPT-J 6B": "EleutherAI/gpt-j-6B", "Falcon 7B": "tiiuae/falcon-7b", "XGen 7B": "Salesforce/xgen-7b-8k-base", "BTLM 3B": "cerebras/btlm-3b-8k-base", "MPT 7B": "mosaicml/mpt-7b", "StableLM 2": "stabilityai/stablelm-2-1_6b", "LLaMA 2 7B (heavy)": "meta-llama/Llama-2-7b-hf" } # Cache image_pipes = {} text_pipes = {} def generate_image(prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.manual_seed(seed) progress(0, desc="Loading model...") if model_name not in image_pipes: image_pipes[model_name] = DiffusionPipeline.from_pretrained( image_models[model_name], torch_dtype=torch_dtype ).to(device) pipe = image_pipes[model_name] progress(25, desc="Running inference (step 1/3)...") result = pipe(prompt=prompt, generator=generator, num_inference_steps=30, width=512, height=512) progress(100, desc="Done.") return result.images[0], seed def generate_text(prompt, model_name, progress=gr.Progress(track_tqdm=True)): progress(0, desc="Loading model...") if model_name not in text_pipes: text_pipes[model_name] = pipeline("text-generation", model=text_models[model_name], device=0 if device == "cuda" else -1) pipe = text_pipes[model_name] progress(50, desc="Generating text...") result = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text'] progress(100, desc="Done.") return result # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# 🧠 Multi-Model AI Playground with Progress") with gr.Tabs(): # 🖼️ Image Gen Tab with gr.Tab("🖼️ Image Generation"): img_prompt = gr.Textbox(label="Prompt") img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5 (light)", label="Image Model") img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed") img_rand = gr.Checkbox(label="Randomize seed", value=True) img_btn = gr.Button("Generate Image") img_out = gr.Image() img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed]) # 📝 Text Gen Tab with gr.Tab("📝 Text Generation"): txt_prompt = gr.Textbox(label="Prompt") txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2 (light)", label="Text Model") txt_btn = gr.Button("Generate Text") txt_out = gr.Textbox(label="Output Text") txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=txt_out) # 🎥 Video Gen Tab (placeholder) with gr.Tab("🎥 Video Generation (Placeholder)"): gr.Markdown("⚠️ Video generation is placeholder only. Models require special setup.") vid_prompt = gr.Textbox(label="Prompt") vid_btn = gr.Button("Pretend to Generate") vid_out = gr.Textbox(label="Result") vid_btn.click(lambda x: f"Fake video output for: {x}", inputs=[vid_prompt], outputs=[vid_out]) demo.launch(show_error=True)