import torch from diffusers import StableDiffusionPipeline import gradio as gr # Use GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" # Load Stable Diffusion v1.5 from Hugging Face pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32, revision="fp16" if device == "cuda" else None, use_safetensors=True ) pipe = pipe.to(device) # Inference function def generate(prompt, guidance, steps, width, height): image = pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, height=height, width=width).images[0] return image # Gradio UI title = "🎨 Offline Text-to-Image Generator (Stable Diffusion v1.5)" description = "Generate images from text prompts using a fully self-hosted Stable Diffusion model." with gr.Blocks() as demo: gr.Markdown(f"# {title}") gr.Markdown(description) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Enter your prompt", placeholder="A steampunk dragon flying over a futuristic city") guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale") steps = gr.Slider(10, 100, value=30, step=5, label="Inference Steps") width = gr.Slider(256, 768, value=512, step=64, label="Image Width") height = gr.Slider(256, 768, value=512, step=64, label="Image Height") submit = gr.Button("Generate Image") with gr.Column(): output = gr.Image(label="Generated Image") submit.click(fn=generate, inputs=[prompt, guidance, steps, width, height], outputs=output) demo.launch()