visionary-ai / app.py
kevalfst's picture
Update app.py
01aaa01 verified
raw
history blame
1.95 kB
import gradio as gr
from transformers import Qwen2_5OmniForCausalLM, AutoProcessor
import torch
# Load model and processor
model_name = "Qwen/Qwen2.5-Omni-3B"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained(model_name)
device = model.device
# Function to process inputs and generate response
def process_input(text_input, image_input=None, audio_input=None, video_input=None):
conversation = [
{"role": "user", "content": [{"text": text_input}]}
]
if image_input:
conversation[0]["content"].append({"image": image_input})
if audio_input:
conversation[0]["content"].append({"audio": audio_input})
if video_input:
conversation[0]["content"].append({"video": video_input})
# Process conversation
model_inputs = processor.apply_chat_template(conversation, return_tensors="pt").to(device)
# Generate response
outputs = model.generate(**model_inputs, max_length=200)
response_text = processor.decode(outputs[0], skip_special_tokens=True)
# Audio output not implemented
response_audio = None
return response_text, response_audio
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Qwen2.5-Omni-3B Demo")
with gr.Row():
text_input = gr.Textbox(label="Text Input")
image_input = gr.Image(label="Upload Image", type="filepath")
audio_input = gr.Audio(label="Upload Audio", type="filepath")
video_input = gr.Video(label="Upload Video", type="filepath")
submit_button = gr.Button("Submit")
text_output = gr.Textbox(label="Text Response")
audio_output = gr.Audio(label="Audio Response")
submit_button.click(
fn=process_input,
inputs=[text_input, image_input, audio_input, video_input],
outputs=[text_output, audio_output]
)
# Launch the app
demo.launch()