|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import spaces |
|
import time |
|
from tqdm import tqdm |
|
from hyperpyyaml import load_hyperpyyaml |
|
from huggingface_hub import snapshot_download |
|
import torch |
|
from cosyvoice.cli.cosyvoice import CosyVoiceFrontEnd |
|
from cosyvoice.cli.cosyvoice import CosyVoiceModel, CosyVoice2Model |
|
from cosyvoice.cli.cosyvoice import logging |
|
|
|
|
|
class CosyVoice: |
|
|
|
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True): |
|
instruct = True if '-Instruct' in model_dir else False |
|
self.model_dir = model_dir |
|
if not os.path.exists(model_dir): |
|
model_dir = snapshot_download(model_dir) |
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f: |
|
configs = load_hyperpyyaml(f) |
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'], |
|
configs['feat_extractor'], |
|
'{}/campplus.onnx'.format(model_dir), |
|
'{}/speech_tokenizer_v1.onnx'.format(model_dir), |
|
'{}/spk2info.pt'.format(model_dir), |
|
instruct, |
|
configs['allowed_special']) |
|
self.sample_rate = configs['sample_rate'] |
|
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True): |
|
load_jit = False |
|
fp16 = False |
|
logging.warning('cpu do not support fp16 and jit, force set to False') |
|
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16) |
|
self.model.load('{}/llm.pt'.format(model_dir), |
|
'{}/flow.pt'.format(model_dir), |
|
'{}/hift.pt'.format(model_dir)) |
|
if load_jit: |
|
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir), |
|
'{}/llm.llm.fp16.zip'.format(model_dir), |
|
'{}/flow.encoder.fp32.zip'.format(model_dir)) |
|
if load_onnx: |
|
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir)) |
|
del configs |
|
|
|
def list_avaliable_spks(self): |
|
spks = list(self.frontend.spk2info.keys()) |
|
return spks |
|
@spaces.GPU |
|
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0): |
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): |
|
model_input = self.frontend.frontend_sft(i, spk_id) |
|
start_time = time.time() |
|
logging.info('synthesis text {}'.format(i)) |
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): |
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate |
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) |
|
yield model_output |
|
start_time = time.time() |
|
|
|
@spaces.GPU |
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0): |
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False) |
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): |
|
if len(i) < 0.5 * len(prompt_text): |
|
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text)) |
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate) |
|
start_time = time.time() |
|
logging.info('synthesis text {}'.format(i)) |
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): |
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate |
|
logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std())) |
|
yield model_output |
|
start_time = time.time() |
|
|
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0): |
|
if self.frontend.instruct is True: |
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir)) |
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): |
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate) |
|
start_time = time.time() |
|
logging.info('synthesis text {}'.format(i)) |
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): |
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate |
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) |
|
yield model_output |
|
start_time = time.time() |
|
|
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0): |
|
if self.frontend.instruct is False: |
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir)) |
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False) |
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): |
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text) |
|
start_time = time.time() |
|
logging.info('synthesis text {}'.format(i)) |
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): |
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate |
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) |
|
yield model_output |
|
start_time = time.time() |
|
|
|
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0): |
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): |
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate) |
|
start_time = time.time() |
|
logging.info('synthesis text {}'.format(i)) |
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): |
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate |
|
logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std())) |
|
yield model_output |
|
start_time = time.time() |
|
|
|
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0): |
|
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate) |
|
start_time = time.time() |
|
for model_output in self.model.vc(**model_input, stream=stream, speed=speed): |
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate |
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) |
|
yield model_output |
|
start_time = time.time() |
|
|
|
class CosyVoice2(CosyVoice): |
|
|
|
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False): |
|
instruct = True if '-Instruct' in model_dir else False |
|
self.model_dir = model_dir |
|
if not os.path.exists(model_dir): |
|
model_dir = snapshot_download(model_dir) |
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f: |
|
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')}) |
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'], |
|
configs['feat_extractor'], |
|
'{}/campplus.onnx'.format(model_dir), |
|
'{}/speech_tokenizer_v2.onnx'.format(model_dir), |
|
'{}/spk2info.pt'.format(model_dir), |
|
instruct, |
|
configs['allowed_special']) |
|
self.sample_rate = configs['sample_rate'] |
|
if torch.cuda.is_available() is False and load_jit is True: |
|
load_jit = False |
|
logging.warning('cpu do not support jit, force set to False') |
|
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift']) |
|
self.model.load('{}/llm.pt'.format(model_dir), |
|
'{}/flow.pt'.format(model_dir), |
|
'{}/hift.pt'.format(model_dir)) |
|
if load_jit: |
|
self.model.load_jit('{}/flow.encoder.fp32.zip'.format(model_dir)) |
|
if load_trt is True and load_onnx is True: |
|
load_onnx = False |
|
logging.warning('can not set both load_trt and load_onnx to True, force set load_onnx to False') |
|
if load_onnx: |
|
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir)) |
|
if load_trt: |
|
self.model.load_trt('{}/flow.decoder.estimator.fp16.l20.plan'.format(model_dir)) |
|
del configs |