|
DESCR = """ |
|
# TTS Arena |
|
|
|
Vote on different speech synthesis models! |
|
|
|
## Instructions |
|
|
|
* Listen to two anonymous models |
|
* Vote on which one is more natural and realistic |
|
* If there's a tie, click Skip |
|
|
|
*IMPORTANT: Do not only rank the outputs based on naturalness. Also rank based on intelligibility (can you actually tell what they're saying?) and other factors (does it sound like a human?).* |
|
|
|
**When you're ready to begin, click the Start button below!** The model names will be revealed once you vote. |
|
""".strip() |
|
import gradio as gr |
|
import random |
|
import os |
|
from datasets import load_dataset |
|
dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN')) |
|
theme = gr.themes.Base( |
|
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], |
|
) |
|
model_names = { |
|
'styletts2': 'StyleTTS 2', |
|
'tacotron': 'Tacotron', |
|
'speedyspeech': 'Speedy Speech', |
|
'overflow': 'Overflow TTS', |
|
'vits': 'VITS', |
|
'vitsneon': 'VITS Neon', |
|
'neuralhmm': 'Neural HMM', |
|
'glow': 'Glow TTS', |
|
'fastpitch': 'FastPitch', |
|
} |
|
def get_random_split(existing_split=None): |
|
choice = random.choice(list(dataset.keys())) |
|
if existing_split and choice == existing_split: |
|
return get_random_split(choice) |
|
else: |
|
return choice |
|
def get_random_splits(): |
|
choice1 = get_random_split() |
|
choice2 = get_random_split(choice1) |
|
return (choice1, choice2) |
|
def a_is_better(model1, model2): |
|
chosen_model = model1 |
|
print(chosen_model) |
|
return reload(model1, model2) |
|
def b_is_better(model1, model2): |
|
chosen_model = model2 |
|
print(chosen_model) |
|
return reload(model1, model2) |
|
def reload(chosenmodel1=None, chosenmodel2=None): |
|
|
|
split1, split2 = get_random_splits() |
|
d1, d2 = (dataset[split1], dataset[split2]) |
|
choice1, choice2 = (d1.shuffle()[0]['audio'], d2.shuffle()[0]['audio']) |
|
if split1 in model_names: |
|
split1 = model_names[split1] |
|
if split2 in model_names: |
|
split2 = model_names[split2] |
|
out = [ |
|
(choice1['sampling_rate'], choice1['array']), |
|
(choice2['sampling_rate'], choice2['array']), |
|
split1, |
|
split2 |
|
] |
|
if chosenmodel1: out.append(f'This model was {chosenmodel1}') |
|
if chosenmodel2: out.append(f'This model was {chosenmodel2}') |
|
return out |
|
with gr.Blocks(theme=theme) as demo: |
|
|
|
gr.Markdown(DESCR) |
|
with gr.Row(): |
|
gr.HTML('<div align="left"><h3>Model A</h3></div>') |
|
gr.HTML('<div align="right"><h3>Model B</h3></div>') |
|
model1 = gr.Textbox(interactive=False, visible=False) |
|
model2 = gr.Textbox(interactive=False, visible=False) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A") |
|
prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right") |
|
with gr.Row(): |
|
aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) |
|
aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) |
|
with gr.Row(): |
|
abetter = gr.Button("A is Better", scale=3) |
|
skipbtn = gr.Button("Skip", scale=1) |
|
bbetter = gr.Button("B is Better", scale=3) |
|
outputs = [aud1, aud2, model1, model2, prevmodel1, prevmodel2] |
|
abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2]) |
|
bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2]) |
|
skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2]) |
|
demo.load(reload, outputs=[aud1, aud2, model1, model2]) |
|
demo.queue(api_open=False).launch(show_api=False) |