Spaces:
Runtime error
Runtime error
File size: 17,826 Bytes
1c60c6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
""" parquet compat """
from __future__ import annotations
import io
import os
from typing import Any
from warnings import catch_warnings
from pandas._typing import (
FilePath,
ReadBuffer,
StorageOptions,
WriteBuffer,
)
from pandas.compat._optional import import_optional_dependency
from pandas.errors import AbstractMethodError
from pandas.util._decorators import doc
from pandas import (
DataFrame,
MultiIndex,
get_option,
)
from pandas.core.shared_docs import _shared_docs
from pandas.util.version import Version
from pandas.io.common import (
IOHandles,
get_handle,
is_fsspec_url,
is_url,
stringify_path,
)
def get_engine(engine: str) -> BaseImpl:
"""return our implementation"""
if engine == "auto":
engine = get_option("io.parquet.engine")
if engine == "auto":
# try engines in this order
engine_classes = [PyArrowImpl, FastParquetImpl]
error_msgs = ""
for engine_class in engine_classes:
try:
return engine_class()
except ImportError as err:
error_msgs += "\n - " + str(err)
raise ImportError(
"Unable to find a usable engine; "
"tried using: 'pyarrow', 'fastparquet'.\n"
"A suitable version of "
"pyarrow or fastparquet is required for parquet "
"support.\n"
"Trying to import the above resulted in these errors:"
f"{error_msgs}"
)
if engine == "pyarrow":
return PyArrowImpl()
elif engine == "fastparquet":
return FastParquetImpl()
raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
def _get_path_or_handle(
path: FilePath | ReadBuffer[bytes] | WriteBuffer[bytes],
fs: Any,
storage_options: StorageOptions = None,
mode: str = "rb",
is_dir: bool = False,
) -> tuple[
FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any
]:
"""File handling for PyArrow."""
path_or_handle = stringify_path(path)
if is_fsspec_url(path_or_handle) and fs is None:
fsspec = import_optional_dependency("fsspec")
fs, path_or_handle = fsspec.core.url_to_fs(
path_or_handle, **(storage_options or {})
)
elif storage_options and (not is_url(path_or_handle) or mode != "rb"):
# can't write to a remote url
# without making use of fsspec at the moment
raise ValueError("storage_options passed with buffer, or non-supported URL")
handles = None
if (
not fs
and not is_dir
and isinstance(path_or_handle, str)
and not os.path.isdir(path_or_handle)
):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(
path_or_handle, mode, is_text=False, storage_options=storage_options
)
fs = None
path_or_handle = handles.handle
return path_or_handle, handles, fs
class BaseImpl:
@staticmethod
def validate_dataframe(df: DataFrame) -> None:
if not isinstance(df, DataFrame):
raise ValueError("to_parquet only supports IO with DataFrames")
# must have value column names for all index levels (strings only)
if isinstance(df.columns, MultiIndex):
if not all(
x.inferred_type in {"string", "empty"} for x in df.columns.levels
):
raise ValueError(
"""
parquet must have string column names for all values in
each level of the MultiIndex
"""
)
else:
if df.columns.inferred_type not in {"string", "empty"}:
raise ValueError("parquet must have string column names")
# index level names must be strings
valid_names = all(
isinstance(name, str) for name in df.index.names if name is not None
)
if not valid_names:
raise ValueError("Index level names must be strings")
def write(self, df: DataFrame, path, compression, **kwargs):
raise AbstractMethodError(self)
def read(self, path, columns=None, **kwargs) -> DataFrame:
raise AbstractMethodError(self)
class PyArrowImpl(BaseImpl):
def __init__(self) -> None:
import_optional_dependency(
"pyarrow", extra="pyarrow is required for parquet support."
)
import pyarrow.parquet
# import utils to register the pyarrow extension types
import pandas.core.arrays.arrow.extension_types # pyright: ignore # noqa:F401
self.api = pyarrow
def write(
self,
df: DataFrame,
path: FilePath | WriteBuffer[bytes],
compression: str | None = "snappy",
index: bool | None = None,
storage_options: StorageOptions = None,
partition_cols: list[str] | None = None,
**kwargs,
) -> None:
self.validate_dataframe(df)
from_pandas_kwargs: dict[str, Any] = {"schema": kwargs.pop("schema", None)}
if index is not None:
from_pandas_kwargs["preserve_index"] = index
table = self.api.Table.from_pandas(df, **from_pandas_kwargs)
path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle(
path,
kwargs.pop("filesystem", None),
storage_options=storage_options,
mode="wb",
is_dir=partition_cols is not None,
)
if (
isinstance(path_or_handle, io.BufferedWriter)
and hasattr(path_or_handle, "name")
and isinstance(path_or_handle.name, (str, bytes))
):
path_or_handle = path_or_handle.name
if isinstance(path_or_handle, bytes):
path_or_handle = path_or_handle.decode()
try:
if partition_cols is not None:
# writes to multiple files under the given path
self.api.parquet.write_to_dataset(
table,
path_or_handle,
compression=compression,
partition_cols=partition_cols,
**kwargs,
)
else:
# write to single output file
self.api.parquet.write_table(
table, path_or_handle, compression=compression, **kwargs
)
finally:
if handles is not None:
handles.close()
def read(
self,
path,
columns=None,
use_nullable_dtypes=False,
storage_options: StorageOptions = None,
**kwargs,
) -> DataFrame:
kwargs["use_pandas_metadata"] = True
to_pandas_kwargs = {}
if use_nullable_dtypes:
import pandas as pd
mapping = {
self.api.int8(): pd.Int8Dtype(),
self.api.int16(): pd.Int16Dtype(),
self.api.int32(): pd.Int32Dtype(),
self.api.int64(): pd.Int64Dtype(),
self.api.uint8(): pd.UInt8Dtype(),
self.api.uint16(): pd.UInt16Dtype(),
self.api.uint32(): pd.UInt32Dtype(),
self.api.uint64(): pd.UInt64Dtype(),
self.api.bool_(): pd.BooleanDtype(),
self.api.string(): pd.StringDtype(),
self.api.float32(): pd.Float32Dtype(),
self.api.float64(): pd.Float64Dtype(),
}
to_pandas_kwargs["types_mapper"] = mapping.get
manager = get_option("mode.data_manager")
if manager == "array":
to_pandas_kwargs["split_blocks"] = True # type: ignore[assignment]
path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle(
path,
kwargs.pop("filesystem", None),
storage_options=storage_options,
mode="rb",
)
try:
result = self.api.parquet.read_table(
path_or_handle, columns=columns, **kwargs
).to_pandas(**to_pandas_kwargs)
if manager == "array":
result = result._as_manager("array", copy=False)
return result
finally:
if handles is not None:
handles.close()
class FastParquetImpl(BaseImpl):
def __init__(self) -> None:
# since pandas is a dependency of fastparquet
# we need to import on first use
fastparquet = import_optional_dependency(
"fastparquet", extra="fastparquet is required for parquet support."
)
self.api = fastparquet
def write(
self,
df: DataFrame,
path,
compression="snappy",
index=None,
partition_cols=None,
storage_options: StorageOptions = None,
**kwargs,
) -> None:
self.validate_dataframe(df)
# thriftpy/protocol/compact.py:339:
# DeprecationWarning: tostring() is deprecated.
# Use tobytes() instead.
if "partition_on" in kwargs and partition_cols is not None:
raise ValueError(
"Cannot use both partition_on and "
"partition_cols. Use partition_cols for partitioning data"
)
elif "partition_on" in kwargs:
partition_cols = kwargs.pop("partition_on")
if partition_cols is not None:
kwargs["file_scheme"] = "hive"
# cannot use get_handle as write() does not accept file buffers
path = stringify_path(path)
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
# if filesystem is provided by fsspec, file must be opened in 'wb' mode.
kwargs["open_with"] = lambda path, _: fsspec.open(
path, "wb", **(storage_options or {})
).open()
elif storage_options:
raise ValueError(
"storage_options passed with file object or non-fsspec file path"
)
with catch_warnings(record=True):
self.api.write(
path,
df,
compression=compression,
write_index=index,
partition_on=partition_cols,
**kwargs,
)
def read(
self, path, columns=None, storage_options: StorageOptions = None, **kwargs
) -> DataFrame:
parquet_kwargs: dict[str, Any] = {}
use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False)
if Version(self.api.__version__) >= Version("0.7.1"):
# We are disabling nullable dtypes for fastparquet pending discussion
parquet_kwargs["pandas_nulls"] = False
if use_nullable_dtypes:
raise ValueError(
"The 'use_nullable_dtypes' argument is not supported for the "
"fastparquet engine"
)
path = stringify_path(path)
handles = None
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
if Version(self.api.__version__) > Version("0.6.1"):
parquet_kwargs["fs"] = fsspec.open(
path, "rb", **(storage_options or {})
).fs
else:
parquet_kwargs["open_with"] = lambda path, _: fsspec.open(
path, "rb", **(storage_options or {})
).open()
elif isinstance(path, str) and not os.path.isdir(path):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(
path, "rb", is_text=False, storage_options=storage_options
)
path = handles.handle
try:
parquet_file = self.api.ParquetFile(path, **parquet_kwargs)
return parquet_file.to_pandas(columns=columns, **kwargs)
finally:
if handles is not None:
handles.close()
@doc(storage_options=_shared_docs["storage_options"])
def to_parquet(
df: DataFrame,
path: FilePath | WriteBuffer[bytes] | None = None,
engine: str = "auto",
compression: str | None = "snappy",
index: bool | None = None,
storage_options: StorageOptions = None,
partition_cols: list[str] | None = None,
**kwargs,
) -> bytes | None:
"""
Write a DataFrame to the parquet format.
Parameters
----------
df : DataFrame
path : str, path object, file-like object, or None, default None
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function. If None, the result is
returned as bytes. If a string, it will be used as Root Directory path
when writing a partitioned dataset. The engine fastparquet does not
accept file-like objects.
.. versionchanged:: 1.2.0
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}},
default 'snappy'. Name of the compression to use. Use ``None``
for no compression. The supported compression methods actually
depend on which engine is used. For 'pyarrow', 'snappy', 'gzip',
'brotli', 'lz4', 'zstd' are all supported. For 'fastparquet',
only 'gzip' and 'snappy' are supported.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output. If
``False``, they will not be written to the file.
If ``None``, similar to ``True`` the dataframe's index(es)
will be saved. However, instead of being saved as values,
the RangeIndex will be stored as a range in the metadata so it
doesn't require much space and is faster. Other indexes will
be included as columns in the file output.
partition_cols : str or list, optional, default None
Column names by which to partition the dataset.
Columns are partitioned in the order they are given.
Must be None if path is not a string.
{storage_options}
.. versionadded:: 1.2.0
kwargs
Additional keyword arguments passed to the engine
Returns
-------
bytes if no path argument is provided else None
"""
if isinstance(partition_cols, str):
partition_cols = [partition_cols]
impl = get_engine(engine)
path_or_buf: FilePath | WriteBuffer[bytes] = io.BytesIO() if path is None else path
impl.write(
df,
path_or_buf,
compression=compression,
index=index,
partition_cols=partition_cols,
storage_options=storage_options,
**kwargs,
)
if path is None:
assert isinstance(path_or_buf, io.BytesIO)
return path_or_buf.getvalue()
else:
return None
@doc(storage_options=_shared_docs["storage_options"])
def read_parquet(
path: FilePath | ReadBuffer[bytes],
engine: str = "auto",
columns: list[str] | None = None,
storage_options: StorageOptions = None,
use_nullable_dtypes: bool = False,
**kwargs,
) -> DataFrame:
"""
Load a parquet object from the file path, returning a DataFrame.
Parameters
----------
path : str, path object or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``read()`` function.
The string could be a URL. Valid URL schemes include http, ftp, s3,
gs, and file. For file URLs, a host is expected. A local file could be:
``file://localhost/path/to/table.parquet``.
A file URL can also be a path to a directory that contains multiple
partitioned parquet files. Both pyarrow and fastparquet support
paths to directories as well as file URLs. A directory path could be:
``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``.
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
columns : list, default=None
If not None, only these columns will be read from the file.
{storage_options}
.. versionadded:: 1.3.0
use_nullable_dtypes : bool, default False
If True, use dtypes that use ``pd.NA`` as missing value indicator
for the resulting DataFrame. (only applicable for the ``pyarrow``
engine)
As new dtypes are added that support ``pd.NA`` in the future, the
output with this option will change to use those dtypes.
Note: this is an experimental option, and behaviour (e.g. additional
support dtypes) may change without notice.
.. versionadded:: 1.2.0
**kwargs
Any additional kwargs are passed to the engine.
Returns
-------
DataFrame
"""
impl = get_engine(engine)
return impl.read(
path,
columns=columns,
storage_options=storage_options,
use_nullable_dtypes=use_nullable_dtypes,
**kwargs,
)
|