File size: 44,936 Bytes
1c60c6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
#  coding=utf-8
#  Copyright 2021-present, the Recognai S.L. team.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
import functools
import logging
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Type, Union

import pandas as pd
from pkg_resources import parse_version

from argilla.client.models import (
    Record,
    Text2TextRecord,
    TextClassificationRecord,
    TokenAttributions,
    TokenClassificationRecord,
)
from argilla.client.sdk.datasets.models import TaskType
from argilla.utils.span_utils import SpanUtils

_LOGGER = logging.getLogger(__name__)


def _requires_datasets(func):
    @functools.wraps(func)
    def check_if_datasets_installed(*args, **kwargs):
        try:
            import datasets
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                f"'datasets' must be installed to use `{func.__name__}`! "
                "You can install 'datasets' with the command: `pip install datasets>1.17.0`"
            )
        if not (parse_version(datasets.__version__) > parse_version("1.17.0")):
            raise ModuleNotFoundError(
                "Version >1.17.0 of 'datasets' must be installed to use `to_datasets`! "
                "You can update 'datasets' with the command: `pip install -U datasets>1.17.0`"
            )
        return func(*args, **kwargs)

    return check_if_datasets_installed


def _requires_spacy(func):
    @functools.wraps(func)
    def check_if_spacy_installed(*args, **kwargs):
        try:
            import spacy
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                f"'spacy' must be installed to use `{func.__name__}`"
                "You can install 'spacy' with the command: `pip install spacy`"
            )
        return func(*args, **kwargs)

    return check_if_spacy_installed


class DatasetBase:
    """The Dataset classes are containers for argilla records.

    This is the base class to facilitate the implementation for each record type.

    Args:
        records: A list of argilla records.

    Raises:
        WrongRecordTypeError: When the record type in the provided
            list does not correspond to the dataset type.
    """

    _RECORD_TYPE = None
    # record fields that can hold multiple input columns from a datasets.Dataset or a pandas.DataFrame
    _RECORD_FIELDS_WITH_MULTIPLE_INPUT_COLUMNS = ["inputs", "metadata"]

    @classmethod
    def _record_init_args(cls) -> List[str]:
        """
        Helper the returns the field list available for creation of inner records.
        The ``_RECORD_TYPE.__fields__`` will be returned as default
        """
        return [field for field in cls._RECORD_TYPE.__fields__]

    def __init__(self, records: Optional[List[Record]] = None):
        if self._RECORD_TYPE is None:
            raise NotImplementedError(
                "A Dataset implementation has to define a `_RECORD_TYPE`!"
            )

        self._records = records or []
        if self._records:
            self._validate_record_type()

    def _validate_record_type(self):
        """Validates the record type.

        Raises:
            WrongRecordTypeError: When the record type in the provided
                list does not correspond to the dataset type.
        """
        record_types = {type(rec): None for rec in self._records}
        if len(record_types) > 1:
            raise WrongRecordTypeError(
                f"A {type(self).__name__} must only contain {self._RECORD_TYPE.__name__}s, "
                f"but you provided various types: {[rt.__name__ for rt in record_types.keys()]}"
            )
        elif next(iter(record_types)) is not self._RECORD_TYPE:
            raise WrongRecordTypeError(
                f"A {type(self).__name__} must only contain {self._RECORD_TYPE.__name__}s, "
                f"but you provided {list(record_types.keys())[0].__name__}s."
            )

    def __iter__(self):
        return self._records.__iter__()

    def __getitem__(self, key):
        return self._records[key]

    def __setitem__(self, key, value):
        if type(value) is not self._RECORD_TYPE:
            raise WrongRecordTypeError(
                f"You are only allowed to set a record of type {self._RECORD_TYPE} in this dataset, but you provided {type(value)}"
            )
        self._records[key] = value

    def __delitem__(self, key):
        del self._records[key]

    def __len__(self) -> int:
        return len(self._records)

    @_requires_datasets
    def to_datasets(self) -> "datasets.Dataset":
        """Exports your records to a `datasets.Dataset`.

        Returns:
            A `datasets.Dataset` containing your records.
        """
        import datasets

        ds_dict = self._to_datasets_dict()
        # TODO: THIS FIELD IS ONLY AT CLIENT API LEVEL. NOT SENSE HERE FOR NOW
        if "search_keywords" in ds_dict:
            del ds_dict["search_keywords"]

        try:
            dataset = datasets.Dataset.from_dict(ds_dict)
        # try without metadata, since it is more prone to incompatible structures
        except Exception:
            del ds_dict["metadata"]
            dataset = datasets.Dataset.from_dict(ds_dict)
            _LOGGER.warning(
                "The 'metadata' of the records were removed, since it was incompatible with the 'datasets' format."
            )

        return dataset

    def _to_datasets_dict(self) -> Dict:
        """Helper method to transform a argilla dataset into a dict that is compatible with `datasets.Dataset`"""
        raise NotImplementedError

    @classmethod
    def from_datasets(cls, dataset: "datasets.Dataset", **kwargs) -> "Dataset":
        """Imports records from a `datasets.Dataset`.

        Columns that are not supported are ignored.

        Args:
            dataset: A datasets Dataset from which to import the records.

        Returns:
            The imported records in a argilla Dataset.
        """
        raise NotImplementedError

    @classmethod
    def _prepare_dataset_and_column_mapping(
        cls,
        dataset: "datasets.Dataset",
        column_mapping: Dict[str, Union[str, List[str]]],
    ) -> Tuple["datasets.Dataset", Dict[str, List[str]]]:
        """Renames and removes columns, and extracts the mapping of the columns to be joined.

        Args:
            dataset: A datasets Dataset from which to import the records.
            column_mapping: Mappings from record fields to column names.

        Returns:
            The prepared dataset and a mapping for the columns to be joined
        """
        import datasets

        if isinstance(dataset, datasets.DatasetDict):
            raise ValueError(
                "`datasets.DatasetDict` are not supported. Please, select the dataset split before."
            )

        # clean column mappings
        column_mapping = {
            key: val for key, val in column_mapping.items() if val is not None
        }

        cols_to_be_renamed, cols_to_be_joined = {}, {}
        for field, col in column_mapping.items():
            if field in cls._RECORD_FIELDS_WITH_MULTIPLE_INPUT_COLUMNS:
                cols_to_be_joined[field] = [col] if isinstance(col, str) else col
            else:
                cols_to_be_renamed[col] = field

        dataset = dataset.rename_columns(cols_to_be_renamed)

        dataset = cls._remove_unsupported_columns(
            dataset,
            extra_columns=[col for cols in cols_to_be_joined.values() for col in cols],
        )

        return dataset, cols_to_be_joined

    @classmethod
    def _remove_unsupported_columns(
        cls,
        dataset: "datasets.Dataset",
        extra_columns: List[str],
    ) -> "datasets.Dataset":
        """Helper function to remove unsupported columns from the `datasets.Dataset` following the record type.

        Args:
            dataset: The dataset.
            extra_columns: Extra columns to be kept.

        Returns:
            The dataset with unsupported columns removed.
        """
        not_supported_columns = [
            col
            for col in dataset.column_names
            if col not in cls._record_init_args() + extra_columns
        ]

        if not_supported_columns:
            _LOGGER.warning(
                f"Following columns are not supported by the {cls._RECORD_TYPE.__name__}"
                f" model and are ignored: {not_supported_columns}"
            )
            dataset = dataset.remove_columns(not_supported_columns)

        return dataset

    @staticmethod
    def _join_datasets_columns_and_delete(
        row: Dict[str, Any], columns: List[str]
    ) -> Dict[str, Any]:
        """Joins columns of a `datasets.Dataset` row into a dict, and deletes the single columns.

        Updates the ``row`` dictionary!

        Args:
            row: A row of a `datasets.Dataset`
            columns: Name of the columns to be joined and deleted from the row.

        Returns:
            A dict containing the columns and its values.
        """
        joined_cols = {}
        for col in columns:
            joined_cols[col] = row[col]
            del row[col]

        return joined_cols

    @staticmethod
    def _parse_datasets_column_with_classlabel(
        column_value: Union[str, List[str], int, List[int]],
        feature: Optional[Any],
    ) -> Optional[Union[str, List[str], int, List[int]]]:
        """Helper function to parse a datasets.Dataset column with a potential ClassLabel feature.

        Args:
            column_value: The value from the datasets Dataset column.
            feature: The feature of the annotation column to optionally convert ints to strs.

        Returns:
            The column value optionally converted to str, or None if the conversion fails.
        """
        import datasets

        # extract ClassLabel feature
        if isinstance(feature, list):
            feature = feature[0]
        if isinstance(feature, datasets.Sequence):
            feature = feature.feature
        if not isinstance(feature, datasets.ClassLabel):
            feature = None

        if feature is None:
            return column_value

        try:
            return feature.int2str(column_value)
        # integers don't have to map to the names ...
        # it seems that sometimes -1 is used to denote "no label"
        except ValueError:
            return None

    def to_pandas(self) -> pd.DataFrame:
        """Exports your records to a `pandas.DataFrame`.

        Returns:
            A `datasets.Dataset` containing your records.
        """
        return pd.DataFrame(map(dict, self._records))

    @classmethod
    def from_pandas(cls, dataframe: pd.DataFrame) -> "Dataset":
        """Imports records from a `pandas.DataFrame`.

        Columns that are not supported are ignored.

        Args:
            dataframe: A pandas DataFrame from which to import the records.

        Returns:
            The imported records in a argilla Dataset.
        """
        not_supported_columns = [
            col for col in dataframe.columns if col not in cls._record_init_args()
        ]
        if not_supported_columns:
            _LOGGER.warning(
                f"Following columns are not supported by the {cls._RECORD_TYPE.__name__} model "
                f"and are ignored: {not_supported_columns}"
            )
            dataframe = dataframe.drop(columns=not_supported_columns)

        return cls._from_pandas(dataframe)

    @classmethod
    def _from_pandas(cls, dataframe: pd.DataFrame) -> "Dataset":
        """Helper method to create a argilla Dataset from a pandas DataFrame.

        Must be implemented by the child class.

        Args:
            dataframe: A pandas DataFrame

        Returns:
            A argilla Dataset
        """
        raise NotImplementedError

    @_requires_datasets
    def prepare_for_training(self, **kwargs) -> "datasets.Dataset":
        """Prepares the dataset for training.

        Args:
            **kwargs: Specific to the task of the dataset.

        Returns:
            A datasets Dataset.
        """
        raise NotImplementedError


def _prepend_docstring(record_type: Type[Record]):
    docstring = f"""This Dataset contains {record_type.__name__} records.

    It allows you to export/import records into/from different formats,
    loop over the records, and access them by index.

    Args:
        records: A list of `{record_type.__name__}`s.

    Raises:
        WrongRecordTypeError: When the record type in the provided
            list does not correspond to the dataset type.
    """

    def docstring_decorator(cls):
        cls.__doc__ = docstring + (cls.__doc__ or "")
        return cls

    return docstring_decorator


@_prepend_docstring(TextClassificationRecord)
class DatasetForTextClassification(DatasetBase):
    """
    Examples:
        >>> # Import/export records:
        >>> import argilla as rg
        >>> dataset = rg.DatasetForTextClassification.from_pandas(my_dataframe)
        >>> dataset.to_datasets()
        >>>
        >>> # Looping over the dataset:
        >>> for record in dataset:
        ...     print(record)
        >>>
        >>> # Passing in a list of records:
        >>> records = [
        ...     rg.TextClassificationRecord(text="example"),
        ...     rg.TextClassificationRecord(text="another example"),
        ... ]
        >>> dataset = rg.DatasetForTextClassification(records)
        >>> assert len(dataset) == 2
        >>>
        >>> # Indexing into the dataset:
        >>> dataset[0]
        ... rg.TextClassificationRecord(text="example")
        >>> dataset[0] = rg.TextClassificationRecord(text="replaced example")
    """

    _RECORD_TYPE = TextClassificationRecord

    def __init__(self, records: Optional[List[TextClassificationRecord]] = None):
        # we implement this to have more specific type hints
        super().__init__(records=records)

    @classmethod
    def from_datasets(
        cls,
        dataset: "datasets.Dataset",
        text: Optional[str] = None,
        id: Optional[str] = None,
        inputs: Optional[Union[str, List[str]]] = None,
        annotation: Optional[str] = None,
        metadata: Optional[Union[str, List[str]]] = None,
    ) -> "DatasetForTextClassification":
        """Imports records from a `datasets.Dataset`.

        Columns that are not supported are ignored.

        Args:
            dataset: A datasets Dataset from which to import the records.
            text: The field name used as record text. Default: `None`
            id: The field name used as record id. Default: `None`
            inputs: A list of field names used for record inputs. Default: `None`
            annotation: The field name used as record annotation. Default: `None`
            metadata: The field name used as record metadata. Default: `None`

        Returns:
            The imported records in a argilla Dataset.

        Examples:
            >>> import datasets
            >>> ds = datasets.Dataset.from_dict({
            ...     "inputs": ["example"],
            ...     "prediction": [
            ...         [{"label": "LABEL1", "score": 0.9}, {"label": "LABEL2", "score": 0.1}]
            ...     ]
            ... })
            >>> DatasetForTextClassification.from_datasets(ds)
        """
        dataset, cols_to_be_joined = cls._prepare_dataset_and_column_mapping(
            dataset,
            dict(
                text=text,
                id=id,
                inputs=inputs,
                annotation=annotation,
                metadata=metadata,
            ),
        )

        records = []
        for row in dataset:
            row["inputs"] = cls._parse_inputs_field(
                row, cols_to_be_joined.get("inputs")
            )
            if row.get("inputs") is not None and row.get("text") is not None:
                del row["text"]

            if row.get("annotation") is not None:
                row["annotation"] = cls._parse_datasets_column_with_classlabel(
                    row["annotation"], dataset.features["annotation"]
                )

            if row.get("prediction"):
                row["prediction"] = (
                    [
                        (
                            pred["label"],
                            pred["score"],
                        )
                        for pred in row["prediction"]
                    ]
                    if row["prediction"] is not None
                    else None
                )

            if row.get("explanation"):
                row["explanation"] = (
                    {
                        key: [
                            TokenAttributions(**tokattr_kwargs)
                            for tokattr_kwargs in val
                        ]
                        for key, val in row["explanation"].items()
                    }
                    if row["explanation"] is not None
                    else None
                )

            if cols_to_be_joined.get("metadata"):
                row["metadata"] = cls._join_datasets_columns_and_delete(
                    row, cols_to_be_joined["metadata"]
                )

            records.append(TextClassificationRecord.parse_obj(row))

        return cls(records)

    @classmethod
    def _parse_inputs_field(
        cls,
        row: Dict[str, Any],
        columns: Optional[List[str]],
    ) -> Optional[Union[Dict[str, str], str]]:
        """Helper function to parse the inputs field.

        Args:
            row: A row of the dataset.Datasets
            columns: A list of columns to be joined for the inputs field, optional.

        Returns:
            None, a dictionary or a string as input for the inputs field.
        """
        inputs = row.get("inputs")

        if columns is not None:
            inputs = cls._join_datasets_columns_and_delete(row, columns)

        if isinstance(inputs, dict):
            inputs = {key: val for key, val in inputs.items() if val is not None}

        return inputs

    @classmethod
    def from_pandas(
        # we implement this to have more specific type hints
        cls,
        dataframe: pd.DataFrame,
    ) -> "DatasetForTextClassification":
        return super().from_pandas(dataframe)

    def _to_datasets_dict(self) -> Dict:
        # create a dict first, where we make the necessary transformations
        ds_dict = {}
        for key in self._RECORD_TYPE.__fields__:
            if key == "prediction":
                ds_dict[key] = [
                    [{"label": pred[0], "score": pred[1]} for pred in rec.prediction]
                    if rec.prediction is not None
                    else None
                    for rec in self._records
                ]
            elif key == "explanation":
                ds_dict[key] = [
                    {
                        key: list(map(dict, tokattrs))
                        for key, tokattrs in rec.explanation.items()
                    }
                    if rec.explanation is not None
                    else None
                    for rec in self._records
                ]
            elif key == "id":
                ds_dict[key] = [
                    None if rec.id is None else str(rec.id) for rec in self._records
                ]
            elif key == "metadata":
                ds_dict[key] = [getattr(rec, key) or None for rec in self._records]
            else:
                ds_dict[key] = [getattr(rec, key) for rec in self._records]

        return ds_dict

    @classmethod
    def _from_pandas(cls, dataframe: pd.DataFrame) -> "DatasetForTextClassification":
        return cls(
            [TextClassificationRecord(**row) for row in dataframe.to_dict("records")]
        )

    @_requires_datasets
    def prepare_for_training(self) -> "datasets.Dataset":
        """Prepares the dataset for training.

        This will return a ``datasets.Dataset`` with a *label* column,
        and one column for each key in the *inputs* dictionary of the records:
            - Records without an annotation are removed.
            - The *label* column corresponds to the annotations of the records.
            - Labels are transformed to integers.

        Returns:
            A datasets Dataset with a *label* column and several *inputs* columns.

        Examples:
            >>> import argilla as rg
            >>> rb_dataset = rg.DatasetForTextClassification([
            ...     rg.TextClassificationRecord(
            ...         inputs={"header": "my header", "content": "my content"},
            ...         annotation="SPAM",
            ...     )
            ... ])
            >>> rb_dataset.prepare_for_training().features
            {'header': Value(dtype='string'),
             'content': Value(dtype='string'),
             'label': ClassLabel(num_classes=1, names=['SPAM'])}

        """
        import datasets

        inputs_keys = {
            key: None
            for rec in self._records
            for key in rec.inputs
            if rec.annotation is not None
        }.keys()

        ds_dict = {**{key: [] for key in inputs_keys}, "label": []}
        for rec in self._records:
            if rec.annotation is None:
                continue
            for key in inputs_keys:
                ds_dict[key].append(rec.inputs.get(key))
            ds_dict["label"].append(rec.annotation)

        if self._records[0].multi_label:
            labels = {label: None for labels in ds_dict["label"] for label in labels}
        else:
            labels = {label: None for label in ds_dict["label"]}

        class_label = (
            datasets.ClassLabel(names=sorted(labels.keys()))
            if ds_dict["label"]
            # in case we don't have any labels, ClassLabel fails with Dataset.from_dict({"labels": []})
            else datasets.Value("string")
        )
        feature_dict = {
            **{key: datasets.Value("string") for key in inputs_keys},
            "label": [class_label] if self._records[0].multi_label else class_label,
        }

        return datasets.Dataset.from_dict(
            ds_dict, features=datasets.Features(feature_dict)
        )


class Framework(Enum):
    TRANSFORMERS = "transformers"
    SPACY = "spacy"

    @classmethod
    def _missing_(cls, value):
        raise ValueError(
            f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}"
        )


@_prepend_docstring(TokenClassificationRecord)
class DatasetForTokenClassification(DatasetBase):
    """
    Examples:
        >>> # Import/export records:
        >>> import argilla as rg
        >>> dataset = rg.DatasetForTokenClassification.from_pandas(my_dataframe)
        >>> dataset.to_datasets()
        >>>
        >>> # Looping over the dataset:
        >>> assert len(dataset) == 2
        >>> for record in dataset:
        ...     print(record)
        >>>
        >>> # Passing in a list of records:
        >>> import argilla as rg
        >>> records = [
        ...     rg.TokenClassificationRecord(text="example", tokens=["example"]),
        ...     rg.TokenClassificationRecord(text="another example", tokens=["another", "example"]),
        ... ]
        >>> dataset = rg.DatasetForTokenClassification(records)
        >>>
        >>> # Indexing into the dataset:
        >>> dataset[0]
        ... rg.TokenClassificationRecord(text="example", tokens=["example"])
        >>> dataset[0] = rg.TokenClassificationRecord(text="replace example", tokens=["replace", "example"])
    """

    _RECORD_TYPE = TokenClassificationRecord

    def __init__(self, records: Optional[List[TokenClassificationRecord]] = None):
        # we implement this to have more specific type hints
        super().__init__(records=records)

    @classmethod
    def _record_init_args(cls) -> List[str]:
        """Adds the `tags` argument to default record init arguments"""
        parent_fields = super(DatasetForTokenClassification, cls)._record_init_args()
        return parent_fields + ["tags"]  # compute annotation from tags

    @classmethod
    def from_datasets(
        cls,
        dataset: "datasets.Dataset",
        text: Optional[str] = None,
        id: Optional[str] = None,
        tokens: Optional[str] = None,
        tags: Optional[str] = None,
        metadata: Optional[Union[str, List[str]]] = None,
    ) -> "DatasetForTokenClassification":
        """Imports records from a `datasets.Dataset`.

        Columns that are not supported are ignored.

        Args:
            dataset: A datasets Dataset from which to import the records.
            text: The field name used as record text. Default: `None`
            id: The field name used as record id. Default: `None`
            tokens: The field name used as record tokens. Default: `None`
            tags: The field name used as record tags. Default: `None`
            metadata: The field name used as record metadata. Default: `None`

        Returns:
            The imported records in a argilla Dataset.

        Examples:
            >>> import datasets
            >>> ds = datasets.Dataset.from_dict({
            ...     "text": ["my example"],
            ...     "tokens": [["my", "example"]],
            ...     "prediction": [
            ...         [{"label": "LABEL1", "start": 3, "end": 10, "score": 1.0}]
            ...     ]
            ... })
            >>> DatasetForTokenClassification.from_datasets(ds)
        """
        dataset, cols_to_be_joined = cls._prepare_dataset_and_column_mapping(
            dataset,
            dict(
                text=text,
                tokens=tokens,
                tags=tags,
                id=id,
                metadata=metadata,
            ),
        )

        records = []
        for row in dataset:
            # TODO: fails with a KeyError if no tokens column is present and no mapping is indicated
            if not row["tokens"]:
                _LOGGER.warning(f"Ignoring row with no tokens.")
                continue

            if row.get("tags"):
                row["tags"] = cls._parse_datasets_column_with_classlabel(
                    row["tags"], dataset.features["tags"]
                )

            if row.get("prediction"):
                row["prediction"] = cls.__entities_to_tuple__(row["prediction"])

            if row.get("annotation"):
                row["annotation"] = cls.__entities_to_tuple__(row["annotation"])

            if cols_to_be_joined.get("metadata"):
                row["metadata"] = cls._join_datasets_columns_and_delete(
                    row, cols_to_be_joined["metadata"]
                )

            records.append(TokenClassificationRecord.parse_obj(row))

        return cls(records)

    @classmethod
    def from_pandas(
        # we implement this to have more specific type hints
        cls,
        dataframe: pd.DataFrame,
    ) -> "DatasetForTokenClassification":
        return super().from_pandas(dataframe)

    def prepare_for_training(
        self,
        framework: Union[Framework, str] = "transformers",
        lang: Optional["spacy.Language"] = None,
    ) -> Union["datasets.Dataset", "spacy.tokens.DocBin"]:
        """Prepares the dataset for training.

        This will return a ``datasets.Dataset`` with all columns returned by ``to_datasets`` method
        and an additional  *ner_tags* column:
            - Records without an annotation are removed.
            - The *ner_tags* column corresponds to the iob tags sequences for annotations of the records
            - The iob tags are transformed to integers.

        Args:
            framework: A string|enum specifying the framework for the training.
                "transformers" and "spacy" are currently supported. Default: `transformers`
            lang: The spacy nlp Language pipeline used to process the dataset. (Only for spacy framework)

        Returns:
            A datasets Dataset with a *ner_tags* column and all columns returned by ``to_datasets`` for "transformers"
            framework.
            A spacy DocBin ready to use for training a spacy NER model for "spacy" framework.

        Examples:
            >>> import argilla as rg
            >>> rb_dataset = rg.DatasetForTokenClassification([
            ...     rg.TokenClassificationRecord(
            ...         text="The text",
            ...         tokens=["The", "text"],
            ...         annotation=[("TAG", 0, 2)],
            ...     )
            ... ])
            >>> rb_dataset.prepare_for_training().features
            {'text': Value(dtype='string'),
             'tokens': Sequence(feature=Value(dtype='string'), length=-1),
             'prediction': Value(dtype='null'),
             'prediction_agent': Value(dtype='null'),
             'annotation': [{'end': Value(dtype='int64'),
               'label': Value(dtype='string'),
               'start': Value(dtype='int64')}],
             'annotation_agent': Value(dtype='null'),
             'id': Value(dtype='null'),
             'metadata': Value(dtype='null'),
             'status': Value(dtype='string'),
             'event_timestamp': Value(dtype='null'),
             'metrics': Value(dtype='null'),
             'ner_tags': [ClassLabel(num_classes=3, names=['O', 'B-TAG', 'I-TAG'])]}


        """

        # turn the string into a Framework instance and trigger error if str is not valid
        if isinstance(framework, str):
            framework = Framework(framework)

        if framework is Framework.TRANSFORMERS:
            return self._prepare_for_training_with_transformers()
        # else: must be spacy for sure
        if lang is None:
            raise ValueError(
                "Please provide a spacy language model to prepare the dataset for training with the spacy framework."
            )
        return self._prepare_for_training_with_spacy(nlp=lang)

    @_requires_datasets
    def _prepare_for_training_with_transformers(self):
        import datasets

        has_annotations = False
        for rec in self._records:
            if rec.annotation is not None:
                has_annotations = True
                break

        if not has_annotations:
            return datasets.Dataset.from_dict({})

        class_tags = ["O"]
        class_tags.extend(
            [
                f"{pre}-{label}"
                for label in sorted(self.__all_labels__())
                for pre in ["B", "I"]
            ]
        )
        class_tags = datasets.ClassLabel(names=class_tags)

        def spans2iob(example):
            span_utils = SpanUtils(example["text"], example["tokens"])
            entity_spans = self.__entities_to_tuple__(example["annotation"])
            tags = span_utils.to_tags(entity_spans)

            return class_tags.str2int(tags)

        ds = (
            self.to_datasets()
            .filter(self.__only_annotations__)
            .map(lambda example: {"ner_tags": spans2iob(example)})
        )
        new_features = ds.features.copy()
        new_features["ner_tags"] = [class_tags]

        return ds.cast(new_features)

    @_requires_spacy
    def _prepare_for_training_with_spacy(
        self, nlp: "spacy.Language"
    ) -> "spacy.tokens.DocBin":

        from spacy.tokens import DocBin

        db = DocBin()

        # Creating the DocBin object as in https://spacy.io/usage/training#training-data
        for record in self._records:
            if record.annotation is None:
                continue

            doc = nlp.make_doc(record.text)
            entities = []

            for anno in record.annotation:
                span = doc.char_span(anno[1], anno[2], label=anno[0])
                # There is a misalignment between record tokenization and spaCy tokenization
                if span is None:
                    # TODO(@dcfidalgo): Do we want to warn and continue or should we stop the training set generation?
                    raise ValueError(
                        "The following annotation does not align with the tokens produced "
                        f"by the provided spacy language model: {(anno[0], record.text[anno[1]:anno[2]])}, {list(doc)}"
                    )
                else:
                    entities.append(span)

            doc.ents = entities
            db.add(doc)

        return db

    def __all_labels__(self):
        all_labels = set()
        for record in self._records:
            if record.annotation:
                all_labels.update([label for label, _, _ in record.annotation])

        return list(all_labels)

    def __only_annotations__(self, data) -> bool:
        return data["annotation"] is not None

    def _to_datasets_dict(self) -> Dict:
        """Helper method to put token classification records in a `datasets.Dataset`"""
        # create a dict first, where we make the necessary transformations
        def entities_to_dict(
            entities: Optional[
                List[Union[Tuple[str, int, int, float], Tuple[str, int, int]]]
            ]
        ) -> Optional[List[Dict[str, Union[str, int, float]]]]:
            if entities is None:
                return None
            return [
                {"label": ent[0], "start": ent[1], "end": ent[2]}
                if len(ent) == 3
                else {"label": ent[0], "start": ent[1], "end": ent[2], "score": ent[3]}
                for ent in entities
            ]

        ds_dict = {}
        for key in self._RECORD_TYPE.__fields__:
            if key == "prediction":
                ds_dict[key] = [
                    entities_to_dict(rec.prediction) for rec in self._records
                ]
            elif key == "annotation":
                ds_dict[key] = [
                    entities_to_dict(rec.annotation) for rec in self._records
                ]
            elif key == "id":
                ds_dict[key] = [
                    None if rec.id is None else str(rec.id) for rec in self._records
                ]
            elif key == "metadata":
                ds_dict[key] = [getattr(rec, key) or None for rec in self._records]
            else:
                ds_dict[key] = [getattr(rec, key) for rec in self._records]

        return ds_dict

    @staticmethod
    def __entities_to_tuple__(
        entities,
    ) -> List[Union[Tuple[str, int, int], Tuple[str, int, int, float]]]:
        return [
            (ent["label"], ent["start"], ent["end"])
            if len(ent) == 3
            else (ent["label"], ent["start"], ent["end"], ent["score"] or 0.0)
            for ent in entities
        ]

    @classmethod
    def _from_pandas(cls, dataframe: pd.DataFrame) -> "DatasetForTokenClassification":
        return cls(
            [TokenClassificationRecord(**row) for row in dataframe.to_dict("records")]
        )


@_prepend_docstring(Text2TextRecord)
class DatasetForText2Text(DatasetBase):
    """
    Examples:
        >>> # Import/export records:
        >>> import argilla as rg
        >>> dataset = rg.DatasetForText2Text.from_pandas(my_dataframe)
        >>> dataset.to_datasets()
        >>>
        >>> # Passing in a list of records:
        >>> records = [
        ...     rg.Text2TextRecord(text="example"),
        ...     rg.Text2TextRecord(text="another example"),
        ... ]
        >>> dataset = rg.DatasetForText2Text(records)
        >>> assert len(dataset) == 2
        >>>
        >>> # Looping over the dataset:
        >>> for record in dataset:
        ...     print(record)
        >>>
        >>> # Indexing into the dataset:
        >>> dataset[0]
        ... rg.Text2TextRecord(text="example"})
        >>> dataset[0] = rg.Text2TextRecord(text="replaced example")
    """

    _RECORD_TYPE = Text2TextRecord

    def __init__(self, records: Optional[List[Text2TextRecord]] = None):
        # we implement this to have more specific type hints
        super().__init__(records=records)

    @classmethod
    def from_datasets(
        cls,
        dataset: "datasets.Dataset",
        text: Optional[str] = None,
        annotation: Optional[str] = None,
        metadata: Optional[Union[str, List[str]]] = None,
        id: Optional[str] = None,
    ) -> "DatasetForText2Text":
        """Imports records from a `datasets.Dataset`.

        Columns that are not supported are ignored.

        Args:
            dataset: A datasets Dataset from which to import the records.
            text: The field name used as record text. Default: `None`
            annotation: The field name used as record annotation. Default: `None`
            metadata: The field name used as record metadata. Default: `None`

        Returns:
            The imported records in a argilla Dataset.

        Examples:
            >>> import datasets
            >>> ds = datasets.Dataset.from_dict({
            ...     "text": ["my example"],
            ...     "prediction": [["mi ejemplo", "ejemplo mio"]]
            ... })
            >>> # or
            >>> ds = datasets.Dataset.from_dict({
            ...     "text": ["my example"],
            ...     "prediction": [[{"text": "mi ejemplo", "score": 0.9}]]
            ... })
            >>> DatasetForText2Text.from_datasets(ds)
        """
        dataset, cols_to_be_joined = cls._prepare_dataset_and_column_mapping(
            dataset,
            dict(
                text=text,
                annotation=annotation,
                id=id,
                metadata=metadata,
            ),
        )

        records = []
        for row in dataset:
            if row.get("prediction"):
                row["prediction"] = cls._parse_prediction_field(row["prediction"])

            if cols_to_be_joined.get("metadata"):
                row["metadata"] = cls._join_datasets_columns_and_delete(
                    row, cols_to_be_joined["metadata"]
                )

            records.append(Text2TextRecord.parse_obj(row))

        return cls(records)

    @staticmethod
    def _parse_prediction_field(predictions: List[Union[str, Dict[str, str]]]):
        def extract_prediction(prediction: Union[str, Dict]):
            if isinstance(prediction, str):
                return prediction
            if prediction["score"] is None:
                return prediction["text"]
            return prediction["text"], prediction["score"]

        return [extract_prediction(pred) for pred in predictions]

    @classmethod
    def from_pandas(
        # we implement this to have more specific type hints
        cls,
        dataframe: pd.DataFrame,
    ) -> "DatasetForText2Text":
        return super().from_pandas(dataframe)

    def _to_datasets_dict(self) -> Dict:
        # create a dict first, where we make the necessary transformations
        def pred_to_dict(pred: Union[str, Tuple[str, float]]):
            if isinstance(pred, str):
                return {"text": pred, "score": None}
            return {"text": pred[0], "score": pred[1]}

        ds_dict = {}
        for key in self._RECORD_TYPE.__fields__:
            if key == "prediction":
                ds_dict[key] = [
                    [pred_to_dict(pred) for pred in rec.prediction]
                    if rec.prediction is not None
                    else None
                    for rec in self._records
                ]
            elif key == "id":
                ds_dict[key] = [
                    None if rec.id is None else str(rec.id) for rec in self._records
                ]
            elif key == "metadata":
                ds_dict[key] = [getattr(rec, key) or None for rec in self._records]
            else:
                ds_dict[key] = [getattr(rec, key) for rec in self._records]

        return ds_dict

    @classmethod
    def _from_pandas(cls, dataframe: pd.DataFrame) -> "DatasetForText2Text":
        return cls([Text2TextRecord(**row) for row in dataframe.to_dict("records")])


Dataset = Union[
    DatasetForTextClassification, DatasetForTokenClassification, DatasetForText2Text
]


def read_datasets(
    dataset: "datasets.Dataset", task: Union[str, TaskType], **kwargs
) -> Dataset:
    """Reads a datasets Dataset and returns a argilla Dataset

    Args:
        dataset: Dataset to be read in.
        task: Task for the dataset, one of: ["TextClassification", "TokenClassification", "Text2Text"].
        **kwargs: Passed on to the task-specific ``DatasetFor*.from_datasets()`` method.

    Returns:
        A argilla dataset for the given task.

    Examples:
        >>> # Read text classification records from a datasets Dataset
        >>> import datasets
        >>> ds = datasets.Dataset.from_dict({
        ...     "inputs": ["example"],
        ...     "prediction": [
        ...         [{"label": "LABEL1", "score": 0.9}, {"label": "LABEL2", "score": 0.1}]
        ...     ]
        ... })
        >>> read_datasets(ds, task="TextClassification")
        >>>
        >>> # Read token classification records from a datasets Dataset
        >>> ds = datasets.Dataset.from_dict({
        ...     "text": ["my example"],
        ...     "tokens": [["my", "example"]],
        ...     "prediction": [
        ...         [{"label": "LABEL1", "start": 3, "end": 10}]
        ...     ]
        ... })
        >>> read_datasets(ds, task="TokenClassification")
        >>>
        >>> # Read text2text records from a datasets Dataset
        >>> ds = datasets.Dataset.from_dict({
        ...     "text": ["my example"],
        ...     "prediction": [["mi ejemplo", "ejemplo mio"]]
        ... })
        >>> # or
        >>> ds = datasets.Dataset.from_dict({
        ...     "text": ["my example"],
        ...     "prediction": [[{"text": "mi ejemplo", "score": 0.9}]]
        ... })
        >>> read_datasets(ds, task="Text2Text")
    """
    if isinstance(task, str):
        task = TaskType(task)

    if task is TaskType.text_classification:
        return DatasetForTextClassification.from_datasets(dataset, **kwargs)
    if task is TaskType.token_classification:
        return DatasetForTokenClassification.from_datasets(dataset, **kwargs)
    if task is TaskType.text2text:
        return DatasetForText2Text.from_datasets(dataset, **kwargs)
    raise NotImplementedError(
        "Reading a datasets Dataset is not implemented for the given task!"
    )


def read_pandas(dataframe: pd.DataFrame, task: Union[str, TaskType]) -> Dataset:
    """Reads a pandas DataFrame and returns a argilla Dataset

    Args:
        dataframe: Dataframe to be read in.
        task: Task for the dataset, one of: ["TextClassification", "TokenClassification", "Text2Text"]

    Returns:
        A argilla dataset for the given task.

    Examples:
        >>> # Read text classification records from a pandas DataFrame
        >>> import pandas as pd
        >>> df = pd.DataFrame({
        ...     "inputs": ["example"],
        ...     "prediction": [
        ...         [("LABEL1", 0.9), ("LABEL2", 0.1)]
        ...     ]
        ... })
        >>> read_pandas(df, task="TextClassification")
        >>>
        >>> # Read token classification records from a datasets Dataset
        >>> df = pd.DataFrame({
        ...     "text": ["my example"],
        ...     "tokens": [["my", "example"]],
        ...     "prediction": [
        ...         [("LABEL1", 3, 10)]
        ...     ]
        ... })
        >>> read_pandas(df, task="TokenClassification")
        >>>
        >>> # Read text2text records from a datasets Dataset
        >>> df = pd.DataFrame({
        ...     "text": ["my example"],
        ...     "prediction": [["mi ejemplo", "ejemplo mio"]]
        ... })
        >>> # or
        >>> ds = pd.DataFrame({
        ...     "text": ["my example"],
        ...     "prediction": [[("mi ejemplo", 0.9)]]
        ... })
        >>> read_pandas(df, task="Text2Text")
    """
    if isinstance(task, str):
        task = TaskType(task)

    if task is TaskType.text_classification:
        return DatasetForTextClassification.from_pandas(dataframe)
    if task is TaskType.token_classification:
        return DatasetForTokenClassification.from_pandas(dataframe)
    if task is TaskType.text2text:
        return DatasetForText2Text.from_pandas(dataframe)
    raise NotImplementedError(
        "Reading a pandas DataFrame is not implemented for the given task!"
    )


class WrongRecordTypeError(Exception):
    pass