Spaces:
Runtime error
Runtime error
File size: 26,707 Bytes
1c60c6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
# coding=utf-8
# Copyright 2021-present, the Recognai S.L. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import logging
import os
import re
import warnings
from asyncio import Future
from functools import wraps
from inspect import signature
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
from tqdm.auto import tqdm
from argilla._constants import (
_OLD_WORKSPACE_HEADER_NAME,
DATASET_NAME_REGEX_PATTERN,
DEFAULT_API_KEY,
WORKSPACE_HEADER_NAME,
)
from argilla.client.apis.datasets import Datasets
from argilla.client.apis.metrics import MetricsAPI
from argilla.client.apis.searches import Searches
from argilla.client.datasets import (
Dataset,
DatasetForText2Text,
DatasetForTextClassification,
DatasetForTokenClassification,
)
from argilla.client.metrics.models import MetricResults
from argilla.client.models import (
BulkResponse,
Record,
Text2TextRecord,
TextClassificationRecord,
TextGenerationRecord,
TokenClassificationRecord,
)
from argilla.client.sdk.client import AuthenticatedClient
from argilla.client.sdk.commons.api import async_bulk
from argilla.client.sdk.commons.errors import BaseClientError
from argilla.client.sdk.datasets import api as datasets_api
from argilla.client.sdk.datasets.models import CopyDatasetRequest, TaskType
from argilla.client.sdk.metrics import api as metrics_api
from argilla.client.sdk.metrics.models import MetricInfo
from argilla.client.sdk.text2text import api as text2text_api
from argilla.client.sdk.text2text.models import (
CreationText2TextRecord,
Text2TextBulkData,
Text2TextQuery,
)
from argilla.client.sdk.text_classification import api as text_classification_api
from argilla.client.sdk.text_classification.models import (
CreationTextClassificationRecord,
LabelingRule,
LabelingRuleMetricsSummary,
TextClassificationBulkData,
TextClassificationQuery,
)
from argilla.client.sdk.token_classification import api as token_classification_api
from argilla.client.sdk.token_classification.models import (
CreationTokenClassificationRecord,
TokenClassificationBulkData,
TokenClassificationQuery,
)
from argilla.client.sdk.users import api as users_api
from argilla.client.sdk.users.models import User
from argilla.utils import setup_loop_in_thread
_LOGGER = logging.getLogger(__name__)
class _ArgillaLogAgent:
def __init__(self, api: "Api"):
self.__api__ = api
self.__loop__, self.__thread__ = setup_loop_in_thread()
@staticmethod
async def __log_internal__(api: "Api", *args, **kwargs):
try:
return await api.log_async(*args, **kwargs)
except Exception as ex:
_LOGGER.error(
f"Cannot log data {args, kwargs}\n"
f"Error of type {type(ex)}\n: {ex}. ({ex.args})"
)
raise ex
def log(self, *args, **kwargs) -> Future:
return asyncio.run_coroutine_threadsafe(
self.__log_internal__(self.__api__, *args, **kwargs), self.__loop__
)
class Api:
# Larger sizes will trigger a warning
_MAX_CHUNK_SIZE = 5000
def __init__(
self,
api_url: Optional[str] = None,
api_key: Optional[str] = None,
workspace: Optional[str] = None,
timeout: int = 60,
extra_headers: Optional[Dict[str, str]] = None,
):
"""Init the Python client.
We will automatically init a default client for you when calling other client methods.
The arguments provided here will overwrite your corresponding environment variables.
Args:
api_url: Address of the REST API. If `None` (default) and the env variable ``ARGILLA_API_URL`` is not set,
it will default to `http://localhost:6900`.
api_key: Authentification key for the REST API. If `None` (default) and the env variable ``ARGILLA_API_KEY``
is not set, it will default to `argilla.apikey`.
workspace: The workspace to which records will be logged/loaded. If `None` (default) and the
env variable ``ARGILLA_WORKSPACE`` is not set, it will default to the private user workspace.
timeout: Wait `timeout` seconds for the connection to timeout. Default: 60.
extra_headers: Extra HTTP headers sent to the server. You can use this to customize
the headers of argilla client requests, like additional security restrictions. Default: `None`.
Examples:
>>> import argilla as rg
>>> rg.init(api_url="http://localhost:9090", api_key="4AkeAPIk3Y")
>>> # Customizing request headers
>>> headers = {"X-Client-id":"id","X-Secret":"secret"}
>>> rg.init(api_url="http://localhost:9090", api_key="4AkeAPIk3Y", extra_headers=headers)
"""
api_url = api_url or os.getenv("ARGILLA_API_URL", "http://localhost:6900")
# Checking that the api_url does not end in '/'
api_url = re.sub(r"\/$", "", api_url)
api_key = api_key or os.getenv("ARGILLA_API_KEY", DEFAULT_API_KEY)
workspace = workspace or os.getenv("ARGILLA_WORKSPACE")
headers = extra_headers or {}
self._client: AuthenticatedClient = AuthenticatedClient(
base_url=api_url,
token=api_key,
timeout=timeout,
headers=headers.copy(),
)
self._user: User = users_api.whoami(client=self._client)
if workspace is not None:
self.set_workspace(workspace)
self._agent = _ArgillaLogAgent(self)
def __del__(self):
if hasattr(self, "_client"):
del self._client
if hasattr(self, "_agent"):
del self._agent
@property
def client(self):
"""The underlying authenticated client"""
return self._client
@property
def datasets(self) -> Datasets:
return Datasets(client=self._client)
@property
def searches(self):
return Searches(client=self._client)
@property
def metrics(self):
return MetricsAPI(client=self.client)
def set_workspace(self, workspace: str):
"""Sets the active workspace.
Args:
workspace: The new workspace
"""
if workspace is None:
raise Exception("Must provide a workspace")
if workspace != self.get_workspace():
if workspace == self._user.username:
self._client.headers.pop(WORKSPACE_HEADER_NAME, workspace)
elif (
self._user.workspaces is not None
and workspace not in self._user.workspaces
):
raise Exception(f"Wrong provided workspace {workspace}")
self._client.headers[WORKSPACE_HEADER_NAME] = workspace
self._client.headers[_OLD_WORKSPACE_HEADER_NAME] = workspace
def get_workspace(self) -> str:
"""Returns the name of the active workspace.
Returns:
The name of the active workspace as a string.
"""
return self._client.headers.get(WORKSPACE_HEADER_NAME, self._user.username)
def copy(self, dataset: str, name_of_copy: str, workspace: str = None):
"""Creates a copy of a dataset including its tags and metadata
Args:
dataset: Name of the source dataset
name_of_copy: Name of the copied dataset
workspace: If provided, dataset will be copied to that workspace
Examples:
>>> import argilla as rg
>>> rg.copy("my_dataset", name_of_copy="new_dataset")
>>> rg.load("new_dataset")
"""
datasets_api.copy_dataset(
client=self._client,
name=dataset,
json_body=CopyDatasetRequest(name=name_of_copy, target_workspace=workspace),
)
def delete(self, name: str) -> None:
"""Deletes a dataset.
Args:
name: The dataset name.
Examples:
>>> import argilla as rg
>>> rg.delete(name="example-dataset")
"""
datasets_api.delete_dataset(client=self._client, name=name)
def log(
self,
records: Union[Record, Iterable[Record], Dataset],
name: str,
tags: Optional[Dict[str, str]] = None,
metadata: Optional[Dict[str, Any]] = None,
chunk_size: int = 500,
verbose: bool = True,
background: bool = False,
) -> Union[BulkResponse, Future]:
"""Logs Records to argilla.
The logging happens asynchronously in a background thread.
Args:
records: The record, an iterable of records, or a dataset to log.
name: The dataset name.
tags: A dictionary of tags related to the dataset.
metadata: A dictionary of extra info for the dataset.
chunk_size: The chunk size for a data bulk.
verbose: If True, shows a progress bar and prints out a quick summary at the end.
background: If True, we will NOT wait for the logging process to finish and return an ``asyncio.Future``
object. You probably want to set ``verbose`` to False in that case.
Returns:
Summary of the response from the REST API.
If the ``background`` argument is set to True, an ``asyncio.Future`` will be returned instead.
Examples:
>>> import argilla as rg
>>> record = rg.TextClassificationRecord(
... text="my first argilla example",
... prediction=[('spam', 0.8), ('ham', 0.2)]
... )
>>> rg.log(record, name="example-dataset")
1 records logged to http://localhost:6900/datasets/argilla/example-dataset
BulkResponse(dataset='example-dataset', processed=1, failed=0)
>>>
>>> # Logging records in the background
>>> rg.log(record, name="example-dataset", background=True, verbose=False)
<Future at 0x7f675a1fffa0 state=pending>
"""
future = self._agent.log(
records=records,
name=name,
tags=tags,
metadata=metadata,
chunk_size=chunk_size,
verbose=verbose,
)
if background:
return future
try:
return future.result()
finally:
future.cancel()
async def log_async(
self,
records: Union[Record, Iterable[Record], Dataset],
name: str,
tags: Optional[Dict[str, str]] = None,
metadata: Optional[Dict[str, Any]] = None,
chunk_size: int = 500,
verbose: bool = True,
) -> BulkResponse:
"""Logs Records to argilla with asyncio.
Args:
records: The record, an iterable of records, or a dataset to log.
name: The dataset name.
tags: A dictionary of tags related to the dataset.
metadata: A dictionary of extra info for the dataset.
chunk_size: The chunk size for a data bulk.
verbose: If True, shows a progress bar and prints out a quick summary at the end.
Returns:
Summary of the response from the REST API
Examples:
>>> # Log asynchronously from your notebook
>>> import asyncio
>>> import argilla as rg
>>> from argilla.utils import setup_loop_in_thread
>>> loop, _ = setup_loop_in_thread()
>>> future_response = asyncio.run_coroutine_threadsafe(
... rg.log_async(my_records, dataset_name), loop
... )
"""
tags = tags or {}
metadata = metadata or {}
if not name:
raise InputValueError("Empty dataset name has been passed as argument.")
if not re.match(DATASET_NAME_REGEX_PATTERN, name):
raise InputValueError(
f"Provided dataset name {name} does not match the pattern"
f" {DATASET_NAME_REGEX_PATTERN}. Please, use a valid name for your"
" dataset. This limitation is caused by naming conventions for indexes"
" in Elasticsearch."
" https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html"
)
if chunk_size > self._MAX_CHUNK_SIZE:
_LOGGER.warning(
"""The introduced chunk size is noticeably large, timeout errors may occur.
Consider a chunk size smaller than %s""",
self._MAX_CHUNK_SIZE,
)
if isinstance(records, Record.__args__):
records = [records]
records = list(records)
try:
record_type = type(records[0])
except IndexError:
raise InputValueError("Empty record list has been passed as argument.")
if record_type is TextClassificationRecord:
bulk_class = TextClassificationBulkData
creation_class = CreationTextClassificationRecord
elif record_type is TokenClassificationRecord:
bulk_class = TokenClassificationBulkData
creation_class = CreationTokenClassificationRecord
elif (record_type is Text2TextRecord) or (record_type is TextGenerationRecord):
bulk_class = Text2TextBulkData
creation_class = CreationText2TextRecord
else:
raise InputValueError(
f"Unknown record type {record_type}. Available values are"
f" {Record.__args__}"
)
processed, failed = 0, 0
progress_bar = tqdm(total=len(records), disable=not verbose)
for i in range(0, len(records), chunk_size):
chunk = records[i : i + chunk_size]
response = await async_bulk(
client=self._client,
name=name,
json_body=bulk_class(
tags=tags,
metadata=metadata,
records=[creation_class.from_client(r) for r in chunk],
),
)
processed += response.parsed.processed
failed += response.parsed.failed
progress_bar.update(len(chunk))
progress_bar.close()
# TODO: improve logging policy in library
if verbose:
_LOGGER.info(
f"Processed {processed} records in dataset {name}. Failed: {failed}"
)
workspace = self.get_workspace()
if (
not workspace
): # Just for backward comp. with datasets with no workspaces
workspace = "-"
print(
f"{processed} records logged to"
f" {self._client.base_url}/datasets/{workspace}/{name}"
)
# Creating a composite BulkResponse with the total processed and failed
return BulkResponse(dataset=name, processed=processed, failed=failed)
def delete_records(
self,
name: str,
query: Optional[str] = None,
ids: Optional[List[Union[str, int]]] = None,
discard_only: bool = False,
discard_when_forbidden: bool = True,
) -> Tuple[int, int]:
"""Delete records from a argilla dataset.
Args:
name: The dataset name.
query: An ElasticSearch query with the `query string syntax
<https://rubrix.readthedocs.io/en/stable/guides/queries.html>`_
ids: If provided, deletes dataset records with given ids.
discard_only: If `True`, matched records won't be deleted. Instead, they will be marked as `Discarded`
discard_when_forbidden: Only super-user or dataset creator can delete records from a dataset.
So, running "hard" deletion for other users will raise an `ForbiddenApiError` error.
If this parameter is `True`, the client API will automatically try to mark as ``Discarded``
records instead. Default, `True`
Returns:
The total of matched records and real number of processed errors. These numbers could not
be the same if some data conflicts are found during operations (some matched records change during
deletion).
Examples:
>>> ## Delete by id
>>> import argilla as rg
>>> rg.delete_records(name="example-dataset", ids=[1,3,5])
>>> ## Discard records by query
>>> import argilla as rg
>>> rg.delete_records(name="example-dataset", query="metadata.code=33", discard_only=True)
"""
return self.datasets.delete_records(
name=name,
query=query,
ids=ids,
mark_as_discarded=discard_only,
discard_when_forbidden=discard_when_forbidden,
)
def load(
self,
name: str,
query: Optional[str] = None,
ids: Optional[List[Union[str, int]]] = None,
limit: Optional[int] = None,
id_from: Optional[str] = None,
as_pandas=None,
) -> Dataset:
"""Loads a argilla dataset.
Parameters:
-----------
name:
The dataset name.
query:
An ElasticSearch query with the
`query string syntax <https://argilla.readthedocs.io/en/stable/guides/queries.html>`_
ids:
If provided, load dataset records with given ids.
limit:
The number of records to retrieve.
id_from:
If provided, starts gathering the records starting from that Record. As the Records returned with the
load method are sorted by ID, ´id_from´ can be used to load using batches.
as_pandas:
DEPRECATED! To get a pandas DataFrame do ``rg.load('my_dataset').to_pandas()``.
Returns:
--------
A argilla dataset.
Examples:
**Basic Loading**: load the samples sorted by their ID
>>> import argilla as rg
>>> dataset = rg.load(name="example-dataset")
**Iterate over a large dataset:**
When dealing with a large dataset you might want to load it in batches to optimize memory consumption
and avoid network timeouts. To that end, a simple batch-iteration over the whole database can be done
employing the `from_id` parameter. This parameter will act as a delimiter, retrieving the N items after
the given id, where N is determined by the `limit` parameter. **NOTE** If
no `limit` is given the whole dataset after that ID will be retrieved.
>>> import argilla as rg
>>> dataset_batch_1 = rg.load(name="example-dataset", limit=1000)
>>> dataset_batch_2 = rg.load(name="example-dataset", limit=1000, id_from=dataset_batch_1[-1].id)
"""
if as_pandas is False:
warnings.warn(
"The argument `as_pandas` is deprecated and will be removed in a future"
" version. Please adapt your code accordingly. ",
FutureWarning,
)
elif as_pandas is True:
raise ValueError(
"The argument `as_pandas` is deprecated and will be removed in a future"
" version. Please adapt your code accordingly. ",
"If you want a pandas DataFrame do"
" `rg.load('my_dataset').to_pandas()`.",
)
response = datasets_api.get_dataset(client=self._client, name=name)
task = response.parsed.task
task_config = {
TaskType.text_classification: (
text_classification_api.data,
TextClassificationQuery,
DatasetForTextClassification,
),
TaskType.token_classification: (
token_classification_api.data,
TokenClassificationQuery,
DatasetForTokenClassification,
),
TaskType.text2text: (
text2text_api.data,
Text2TextQuery,
DatasetForText2Text,
),
}
try:
get_dataset_data, request_class, dataset_class = task_config[task]
except KeyError:
raise ValueError(
f"Load method not supported for the '{task}' task. Supported Tasks: "
f"{[TaskType.text_classification, TaskType.token_classification, TaskType.text2text]}"
)
response = get_dataset_data(
client=self._client,
name=name,
request=request_class(ids=ids, query_text=query),
limit=limit,
id_from=id_from,
)
records = [sdk_record.to_client() for sdk_record in response.parsed]
try:
records_sorted_by_id = sorted(records, key=lambda x: x.id)
# record ids can be a mix of int/str -> sort all as str type
except TypeError:
records_sorted_by_id = sorted(records, key=lambda x: str(x.id))
return dataset_class(records_sorted_by_id)
def dataset_metrics(self, name: str) -> List[MetricInfo]:
response = datasets_api.get_dataset(self._client, name)
response = metrics_api.get_dataset_metrics(
self._client, name=name, task=response.parsed.task
)
return response.parsed
def get_metric(self, name: str, metric: str) -> Optional[MetricInfo]:
metrics = self.dataset_metrics(name)
for metric_ in metrics:
if metric_.id == metric:
return metric_
def compute_metric(
self,
name: str,
metric: str,
query: Optional[str] = None,
interval: Optional[float] = None,
size: Optional[int] = None,
) -> MetricResults:
response = datasets_api.get_dataset(self._client, name)
metric_ = self.get_metric(name, metric=metric)
assert metric_ is not None, f"Metric {metric} not found !!!"
response = metrics_api.compute_metric(
self._client,
name=name,
task=response.parsed.task,
metric=metric,
query=query,
interval=interval,
size=size,
)
return MetricResults(**metric_.dict(), results=response.parsed)
def add_dataset_labeling_rules(self, dataset: str, rules: List[LabelingRule]):
"""Adds the dataset labeling rules"""
for rule in rules:
text_classification_api.add_dataset_labeling_rule(
self._client,
name=dataset,
rule=rule,
)
def update_dataset_labeling_rules(self, dataset: str, rules: List[LabelingRule]):
"""Updates the dataset labeling rules"""
for rule in rules:
text_classification_api.update_dataset_labeling_rule(
self._client, name=dataset, rule=rule
)
def delete_dataset_labeling_rules(self, dataset: str, rules: List[LabelingRule]):
"""Deletes the dataset labeling rules"""
for rule in rules:
text_classification_api.delete_dataset_labeling_rule(
self._client, name=dataset, rule=rule
)
def fetch_dataset_labeling_rules(self, dataset: str) -> List[LabelingRule]:
response = text_classification_api.fetch_dataset_labeling_rules(
self._client, name=dataset
)
return [LabelingRule.parse_obj(data) for data in response.parsed]
def rule_metrics_for_dataset(
self, dataset: str, rule: LabelingRule
) -> LabelingRuleMetricsSummary:
response = text_classification_api.dataset_rule_metrics(
self._client, name=dataset, query=rule.query, label=rule.label
)
return LabelingRuleMetricsSummary.parse_obj(response.parsed)
__ACTIVE_API__: Optional[Api] = None
def active_api() -> Api:
"""Returns the active API.
If Active API is None, initialize a default one.
"""
global __ACTIVE_API__
if __ACTIVE_API__ is None:
__ACTIVE_API__ = Api()
return __ACTIVE_API__
def api_wrapper(api_method: Callable):
"""Decorator to wrap the API methods in module functions.
Propagates the docstrings and adapts the signature of the methods.
"""
def decorator(func):
if asyncio.iscoroutinefunction(api_method):
@wraps(api_method)
async def wrapped_func(*args, **kwargs):
return await func(*args, **kwargs)
else:
@wraps(api_method)
def wrapped_func(*args, **kwargs):
return func(*args, **kwargs)
sign = signature(api_method)
wrapped_func.__signature__ = sign.replace(
parameters=[val for key, val in sign.parameters.items() if key != "self"]
)
return wrapped_func
return decorator
@api_wrapper(Api.__init__)
def init(*args, **kwargs):
global __ACTIVE_API__
__ACTIVE_API__ = Api(*args, **kwargs)
@api_wrapper(Api.set_workspace)
def set_workspace(*args, **kwargs):
return active_api().set_workspace(*args, **kwargs)
@api_wrapper(Api.get_workspace)
def get_workspace(*args, **kwargs):
return active_api().get_workspace(*args, **kwargs)
@api_wrapper(Api.copy)
def copy(*args, **kwargs):
return active_api().copy(*args, **kwargs)
@api_wrapper(Api.delete)
def delete(*args, **kwargs):
return active_api().delete(*args, **kwargs)
@api_wrapper(Api.log)
def log(*args, **kwargs):
return active_api().log(*args, **kwargs)
@api_wrapper(Api.log_async)
def log_async(*args, **kwargs):
return active_api().log_async(*args, **kwargs)
@api_wrapper(Api.load)
def load(*args, **kwargs):
return active_api().load(*args, **kwargs)
@api_wrapper(Api.delete_records)
def delete_records(*args, **kwargs):
return active_api().delete_records(*args, **kwargs)
class InputValueError(BaseClientError):
pass
|