from rag.agents.interface import Pipeline from unstructured.partition.pdf import partition_pdf from unstructured.partition.image import partition_image from unstructured.staging.base import elements_to_json from langchain_community.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter from langchain_community.embeddings import OllamaEmbeddings from langchain.chains import RetrievalQA from langchain_community.vectorstores import Chroma from langchain_community.llms import Ollama from pydantic.v1 import create_model from typing import List from rich.progress import Progress, SpinnerColumn, TextColumn import tempfile import json import warnings import box import yaml import timeit from rich import print from typing import Any import os warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning) # Import config vars with open('config.yml', 'r', encoding='utf8') as ymlfile: cfg = box.Box(yaml.safe_load(ymlfile)) class UnstructuredLightPipeline(Pipeline): def run_pipeline(self, payload: str, query_inputs: [str], query_types: [str], keywords: [str], query: str, file_path: str, index_name: str, options: List[str] = None, group_by_rows: bool = True, update_targets: bool = True, debug: bool = False, local: bool = True) -> Any: print(f"\nRunning pipeline with {payload}\n") if len(query_inputs) == 1: raise ValueError("Please provide more than one query input") start = timeit.default_timer() strategy = cfg.STRATEGY_UNSTRUCTURED_LIGHT model_name = cfg.MODEL_UNSTRUCTURED_LIGHT extract_tables = False # Initialize options as an empty list if it is None options = options or [] if "tables" in options: extract_tables = True # Extracts the elements from the PDF elements = self.invoke_pipeline_step( lambda: self.process_file(file_path, strategy, model_name), "Extracting elements from the document...", local ) if debug: new_extension = 'json' # You can change this to any extension you want new_file_path = self.change_file_extension(file_path, new_extension) documents = self.invoke_pipeline_step( lambda: self.load_text_data(elements, new_file_path, extract_tables), "Loading text data...", local ) else: with tempfile.TemporaryDirectory() as temp_dir: temp_file_path = os.path.join(temp_dir, "file_data.json") documents = self.invoke_pipeline_step( lambda: self.load_text_data(elements, temp_file_path, extract_tables), "Loading text data...", local ) docs = self.invoke_pipeline_step( lambda: self.split_text(documents, cfg.CHUNK_SIZE_UNSTRUCTURED_LIGHT, cfg.OVERLAP_UNSTRUCTURED_LIGHT), "Splitting text...", local ) db = self.invoke_pipeline_step( lambda: self.prepare_vector_store(docs, cfg.EMBEDDINGS_UNSTRUCTURED_LIGHT), "Preparing vector store...", local ) llm = self.invoke_pipeline_step( lambda: Ollama(model=cfg.LLM_UNSTRUCTURED_LIGHT, base_url=cfg.BASE_URL_UNSTRUCTURED_LIGHT), "Initializing Ollama...", local ) raw_result = self.invoke_pipeline_step( lambda: self.execute_langchain_query(llm, db, query), "Executing query...", local ) answer = self.invoke_pipeline_step( lambda: self.validate_output(raw_result, query_inputs, query_types), "Validating output...", local ) end = timeit.default_timer() print(f"\nJSON response:\n") print(answer + '\n') print('=' * 50) print(f"Time to retrieve answer: {end - start}") return answer def process_file(self, file_path, strategy, model_name): elements = None if file_path.lower().endswith('.pdf'): elements = partition_pdf( filename=file_path, strategy=strategy, infer_table_structure=True, model_name=model_name ) elif file_path.lower().endswith(('.jpg', '.jpeg', '.png')): elements = partition_image( filename=file_path, strategy=strategy, infer_table_structure=True, model_name=model_name ) return elements def load_text_data(self, elements, file_path, extract_tables): elements_to_json(elements, filename=file_path) text_file = self.process_json_file(file_path, extract_tables) loader = TextLoader(text_file) documents = loader.load() return documents def split_text(self, text, chunk_size, overlap): text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap) docs = text_splitter.split_documents(text) return docs def prepare_vector_store(self, docs, model_name): db = Chroma.from_documents( documents=docs, collection_name="sparrow-rag", embedding=OllamaEmbeddings(model=model_name) ) return db def execute_langchain_query(self, llm, db, query): qa_chain = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever()) response = qa_chain({"query": query}) raw_result = response['result'] return raw_result def validate_output(self, raw_result, query_inputs, query_types): if raw_result is None: return {} clean_str = raw_result.replace('<|im_end|>', '') # Convert the cleaned string to a dictionary response_dict = json.loads(clean_str) ResponseModel = self.build_response_class(query_inputs, query_types) # Validate and create a Pydantic model instance validated_response = ResponseModel(**response_dict) # Convert the model instance to JSON answer = self.beautify_json(validated_response.json()) return answer def process_json_file(self, input_data, extract_tables): # Read the JSON file with open(input_data, 'r') as file: data = json.load(file) # Iterate over the JSON data and extract required table elements extracted_elements = [] for entry in data: if entry["type"] == "Table": extracted_elements.append(entry["metadata"]["text_as_html"]) elif entry["type"] == "Title" and extract_tables is False: extracted_elements.append(entry["text"]) elif entry["type"] == "NarrativeText" and extract_tables is False: extracted_elements.append(entry["text"]) elif entry["type"] == "UncategorizedText" and extract_tables is False: extracted_elements.append(entry["text"]) # Write the extracted elements to the output file new_extension = 'txt' # You can change this to any extension you want new_file_path = self.change_file_extension(input_data, new_extension) with open(new_file_path, 'w') as output_file: for element in extracted_elements: output_file.write(element + "\n\n") # Adding two newlines for separation return new_file_path # Function to safely evaluate type strings def safe_eval_type(self, type_str, context): try: return eval(type_str, {}, context) except NameError: raise ValueError(f"Type '{type_str}' is not recognized") def build_response_class(self, query_inputs, query_types_as_strings): # Controlled context for eval context = { 'List': List, 'str': str, 'int': int, 'float': float # Include other necessary types or typing constructs here } # Convert string representations to actual types query_types = [self.safe_eval_type(type_str, context) for type_str in query_types_as_strings] # Create fields dictionary fields = {name: (type_, ...) for name, type_ in zip(query_inputs, query_types)} DynamicModel = create_model('DynamicModel', **fields) return DynamicModel def change_file_extension(self, file_path, new_extension): # Check if the new extension starts with a dot and add one if not if not new_extension.startswith('.'): new_extension = '.' + new_extension # Split the file path into two parts: the base (everything before the last dot) and the extension # If there's no dot in the filename, it'll just return the original filename without an extension base = file_path.rsplit('.', 1)[0] # Concatenate the base with the new extension new_file_path = base + new_extension return new_file_path def beautify_json(self, result): try: # Convert and pretty print data = json.loads(str(result)) data = json.dumps(data, indent=4) return data except (json.decoder.JSONDecodeError, TypeError): print("The response is not in JSON format:\n") print(result) return {} def invoke_pipeline_step(self, task_call, task_description, local): if local: with Progress( SpinnerColumn(), TextColumn("[progress.description]{task.description}"), transient=False, ) as progress: progress.add_task(description=task_description, total=None) ret = task_call() else: print(task_description) ret = task_call() return ret