File size: 10,306 Bytes
42cd5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from rag.agents.interface import Pipeline
from unstructured.partition.pdf import partition_pdf
from unstructured.partition.image import partition_image
from unstructured.staging.base import elements_to_json
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import Chroma
from langchain_community.llms import Ollama
from pydantic.v1 import create_model
from typing import List
from rich.progress import Progress, SpinnerColumn, TextColumn
import tempfile
import json
import warnings
import box
import yaml
import timeit
from rich import print
from typing import Any
import os


warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)


# Import config vars
with open('config.yml', 'r', encoding='utf8') as ymlfile:
    cfg = box.Box(yaml.safe_load(ymlfile))


class UnstructuredLightPipeline(Pipeline):
    def run_pipeline(self,
                     payload: str,
                     query_inputs: [str],
                     query_types: [str],
                     keywords: [str],
                     query: str,
                     file_path: str,
                     index_name: str,
                     options: List[str] = None,
                     group_by_rows: bool = True,
                     update_targets: bool = True,
                     debug: bool = False,
                     local: bool = True) -> Any:
        print(f"\nRunning pipeline with {payload}\n")

        if len(query_inputs) == 1:
            raise ValueError("Please provide more than one query input")

        start = timeit.default_timer()

        strategy = cfg.STRATEGY_UNSTRUCTURED_LIGHT
        model_name = cfg.MODEL_UNSTRUCTURED_LIGHT

        extract_tables = False
        # Initialize options as an empty list if it is None
        options = options or []
        if "tables" in options:
            extract_tables = True

        # Extracts the elements from the PDF
        elements = self.invoke_pipeline_step(
            lambda: self.process_file(file_path, strategy, model_name),
            "Extracting elements from the document...",
            local
        )

        if debug:
            new_extension = 'json'  # You can change this to any extension you want
            new_file_path = self.change_file_extension(file_path, new_extension)

            documents = self.invoke_pipeline_step(
                lambda: self.load_text_data(elements, new_file_path, extract_tables),
                "Loading text data...",
                local
            )
        else:
            with tempfile.TemporaryDirectory() as temp_dir:
                temp_file_path = os.path.join(temp_dir, "file_data.json")

                documents = self.invoke_pipeline_step(
                    lambda: self.load_text_data(elements, temp_file_path, extract_tables),
                    "Loading text data...",
                    local
                )

        docs = self.invoke_pipeline_step(
            lambda: self.split_text(documents, cfg.CHUNK_SIZE_UNSTRUCTURED_LIGHT, cfg.OVERLAP_UNSTRUCTURED_LIGHT),
            "Splitting text...",
            local
        )

        db = self.invoke_pipeline_step(
            lambda: self.prepare_vector_store(docs, cfg.EMBEDDINGS_UNSTRUCTURED_LIGHT),
            "Preparing vector store...",
            local
        )

        llm = self.invoke_pipeline_step(
            lambda: Ollama(model=cfg.LLM_UNSTRUCTURED_LIGHT,
                           base_url=cfg.BASE_URL_UNSTRUCTURED_LIGHT),
            "Initializing Ollama...",
            local
        )

        raw_result = self.invoke_pipeline_step(
            lambda: self.execute_langchain_query(llm, db, query),
            "Executing query...",
            local
        )

        answer = self.invoke_pipeline_step(
            lambda: self.validate_output(raw_result, query_inputs, query_types),
            "Validating output...",
            local
        )

        end = timeit.default_timer()

        print(f"\nJSON response:\n")
        print(answer + '\n')
        print('=' * 50)

        print(f"Time to retrieve answer: {end - start}")

        return answer

    def process_file(self, file_path, strategy, model_name):
        elements = None

        if file_path.lower().endswith('.pdf'):
            elements = partition_pdf(
                filename=file_path,
                strategy=strategy,
                infer_table_structure=True,
                model_name=model_name
            )
        elif file_path.lower().endswith(('.jpg', '.jpeg', '.png')):
            elements = partition_image(
                filename=file_path,
                strategy=strategy,
                infer_table_structure=True,
                model_name=model_name
            )

        return elements

    def load_text_data(self, elements, file_path, extract_tables):
        elements_to_json(elements, filename=file_path)
        text_file = self.process_json_file(file_path, extract_tables)

        loader = TextLoader(text_file)
        documents = loader.load()

        return documents

    def split_text(self, text, chunk_size, overlap):
        text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
        docs = text_splitter.split_documents(text)

        return docs

    def prepare_vector_store(self, docs, model_name):
        db = Chroma.from_documents(
            documents=docs,
            collection_name="sparrow-rag",
            embedding=OllamaEmbeddings(model=model_name)
        )

        return db

    def execute_langchain_query(self, llm, db, query):
        qa_chain = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever())
        response = qa_chain({"query": query})
        raw_result = response['result']

        return raw_result

    def validate_output(self, raw_result, query_inputs, query_types):
        if raw_result is None:
            return {}

        clean_str = raw_result.replace('<|im_end|>', '')

        # Convert the cleaned string to a dictionary
        response_dict = json.loads(clean_str)

        ResponseModel = self.build_response_class(query_inputs, query_types)

        # Validate and create a Pydantic model instance
        validated_response = ResponseModel(**response_dict)

        # Convert the model instance to JSON
        answer = self.beautify_json(validated_response.json())

        return answer

    def process_json_file(self, input_data, extract_tables):
        # Read the JSON file
        with open(input_data, 'r') as file:
            data = json.load(file)

        # Iterate over the JSON data and extract required table elements
        extracted_elements = []
        for entry in data:
            if entry["type"] == "Table":
                extracted_elements.append(entry["metadata"]["text_as_html"])
            elif entry["type"] == "Title" and extract_tables is False:
                extracted_elements.append(entry["text"])
            elif entry["type"] == "NarrativeText" and extract_tables is False:
                extracted_elements.append(entry["text"])
            elif entry["type"] == "UncategorizedText" and extract_tables is False:
                extracted_elements.append(entry["text"])

        # Write the extracted elements to the output file
        new_extension = 'txt'  # You can change this to any extension you want
        new_file_path = self.change_file_extension(input_data, new_extension)
        with open(new_file_path, 'w') as output_file:
            for element in extracted_elements:
                output_file.write(element + "\n\n")  # Adding two newlines for separation

        return new_file_path

    # Function to safely evaluate type strings
    def safe_eval_type(self, type_str, context):
        try:
            return eval(type_str, {}, context)
        except NameError:
            raise ValueError(f"Type '{type_str}' is not recognized")

    def build_response_class(self, query_inputs, query_types_as_strings):
        # Controlled context for eval
        context = {
            'List': List,
            'str': str,
            'int': int,
            'float': float
            # Include other necessary types or typing constructs here
        }

        # Convert string representations to actual types
        query_types = [self.safe_eval_type(type_str, context) for type_str in query_types_as_strings]

        # Create fields dictionary
        fields = {name: (type_, ...) for name, type_ in zip(query_inputs, query_types)}

        DynamicModel = create_model('DynamicModel', **fields)

        return DynamicModel

    def change_file_extension(self, file_path, new_extension):
        # Check if the new extension starts with a dot and add one if not
        if not new_extension.startswith('.'):
            new_extension = '.' + new_extension

        # Split the file path into two parts: the base (everything before the last dot) and the extension
        # If there's no dot in the filename, it'll just return the original filename without an extension
        base = file_path.rsplit('.', 1)[0]

        # Concatenate the base with the new extension
        new_file_path = base + new_extension

        return new_file_path

    def beautify_json(self, result):
        try:
            # Convert and pretty print
            data = json.loads(str(result))
            data = json.dumps(data, indent=4)
            return data
        except (json.decoder.JSONDecodeError, TypeError):
            print("The response is not in JSON format:\n")
            print(result)

        return {}

    def invoke_pipeline_step(self, task_call, task_description, local):
        if local:
            with Progress(
                    SpinnerColumn(),
                    TextColumn("[progress.description]{task.description}"),
                    transient=False,
            ) as progress:
                progress.add_task(description=task_description, total=None)
                ret = task_call()
        else:
            print(task_description)
            ret = task_call()

        return ret