Spaces:
Sleeping
Sleeping
File size: 3,859 Bytes
eed818f fc07358 eed818f bb48749 0d3caec 17f5d0b bb48749 eed818f 0d3caec 17f5d0b 0d3caec 17f5d0b 0d3caec 64b9441 0d3caec 64b9441 0d3caec 64b9441 0d3caec 64b9441 7e3d8f5 07f5040 7e3d8f5 c7d3fd1 49565fd 07f5040 b4ee998 07f5040 ac6001e 07f5040 6f7ec70 07f5040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# import streamlit as st
# from transformers import pipeline
# # pipe=pipeline("sentiment-analysis")
# # col1, col2 = st.columns(2)
# # with col1:
# # x=st.button("Sentiment Analysis")
# # with col2:
# # y=st.button("Text Summarization")
# # if x:
# # t=st.text_input("Enter the Text")
# # st.write(pipe(t))
# # if y:
# t1=st.text_input("Enter the Text for Summarization")
# st.write(summarizer(t1))
#from transformers import AutoTokenizer, AutoModel
# import streamlit as st
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")
# #model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
# # Use a pipeline as a high-level helper
# from transformers import pipeline
# #pipe = pipeline("feature-extraction")
# t=st.text_input("Enter the Text")
# pipe = pipeline("summarization")
# st.write(pipe(t))
# import pandas as pd
# import numpy as np
# from ydata_synthetic.synthesizers.regular import RegularSynthesizer
# from ydata_synthetic.synthesizers import ModelParameters, TrainParameters
# import streamlit as st
# from os import getcwd
# text_file=st.file_uploader("Upload the Data File")
# st.write("-------------------------")
# if text_file is not None:
# df=pd.read_csv(text_file)
# dd_list=df.columns
# cat_cols=st.multiselect("Select the Categorical Columns",dd_list)
# num_cols=st.multiselect("Select the Numerical Columns",dd_list)
# Output_file=st.text_input('Enter Output File Name')
# s=st.number_input('Enter the Sample Size',1000)
# OP=Output_file + '.csv'
# sub=st.button('Submit')
# if sub:
# batch_size = 50
# epochs = 3
# learning_rate = 2e-4
# beta_1 = 0.5
# beta_2 = 0.9
# ctgan_args = ModelParameters(batch_size=batch_size,
# lr=learning_rate,
# betas=(beta_1, beta_2))
# train_args = TrainParameters(epochs=epochs)
# synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args)
# synth.fit(data=df, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols)
# df_syn = synth.sample(s)
# df_syn.to_csv(OP)
# c=getcwd()
# c=c + '/' + OP
# with open(c,"rb") as file:
# st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
# st.success("Thanks for using the app !!!")
# import torch
# import streamlit as st
# from transformers import AutoModelForCausalLM, AutoTokenizer
# #torch.set_default_device("cuda")
# model = AutoModelForCausalLM.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", torch_dtype="auto", trust_remote_code=True)
# tokenizer = AutoTokenizer.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", trust_remote_code=True)
# i=st.text_input('Prompt', 'Life of Brian')
# #inputs = tokenizer('''### Instruction: What Does Basic Homeowners Insurance Cover?\n### Response: ''', return_tensors="pt", return_attention_mask=False)
# inputs = tokenizer(i, return_tensors="pt", return_attention_mask=False)
# outputs = model.generate(**inputs, max_length=1024)
# text = tokenizer.batch_decode(outputs)[0]
# print(text)
import torch
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name="facebook/blenderbot-400M-distill"
model=AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
ch=[]
def chat():
h_s="\n".join(ch)
i=st.input("enter")
i_s=tokenizer.encode_plus(h_s,i,return_tensors="pt")
outputs=model.generate(**i_s,max_length=60)
response=tokenizer.decode(outputs[0],skip_special_tokens=True).strip()
c_h.appned(i)
c_h.append(response)
return response
if __name__ == "__main__":
chat()
|