# coding=utf-8 # Copyright 2021 The Deeplab2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for max_deeplab_loss.py.""" import tensorflow as tf from deeplab2 import common from deeplab2 import trainer_pb2 from deeplab2.data import dataset from deeplab2.model.loss import max_deeplab_loss class MaXDeepLabLossTest(tf.test.TestCase): def test_max_deeplab_loss(self): # Build the loss layer. dataset_info = dataset.COCO_PANOPTIC_INFORMATION semantic_loss_options = trainer_pb2.LossOptions.SingleLossOptions( name='softmax_cross_entropy') pq_style_loss_options = trainer_pb2.LossOptions.SingleLossOptions() mask_id_cross_entropy_loss_options = ( trainer_pb2.LossOptions.SingleLossOptions()) instance_discrimination_loss_options = ( trainer_pb2.LossOptions.SingleLossOptions()) loss_options_1 = trainer_pb2.LossOptions( semantic_loss=semantic_loss_options, pq_style_loss=pq_style_loss_options, mask_id_cross_entropy_loss=mask_id_cross_entropy_loss_options, instance_discrimination_loss=instance_discrimination_loss_options) loss_layer_1 = max_deeplab_loss.MaXDeepLabLoss( loss_options_1, ignore_label=dataset_info.ignore_label, thing_class_ids=dataset_info.class_has_instances_list) loss_options_2 = trainer_pb2.LossOptions( pq_style_loss=pq_style_loss_options) loss_layer_2 = max_deeplab_loss.MaXDeepLabLoss( loss_options_2, ignore_label=dataset_info.ignore_label, thing_class_ids=dataset_info.class_has_instances_list) # Build the inputs. pred_dict = { common.PRED_PIXEL_SPACE_NORMALIZED_FEATURE_KEY: tf.random.uniform(shape=[2, 9, 9, 8]), common.PRED_PIXEL_SPACE_MASK_LOGITS_KEY: tf.random.uniform(shape=[2, 9, 9, 128]), common.PRED_TRANSFORMER_CLASS_LOGITS_KEY: tf.random.uniform(shape=[2, 128, 134]), } gt_dict = { common.GT_SEMANTIC_KEY: tf.ones(shape=[2, 33, 33], dtype=tf.int32), common.GT_THING_ID_MASK_KEY: tf.ones(shape=[2, 33, 33], dtype=tf.int32), common.GT_THING_ID_CLASS_KEY: tf.concat( # An image with ten people (class_id = 1) and 118 void masks. [tf.ones(shape=[2, 10], dtype=tf.int32), -tf.ones(shape=[2, 118], dtype=tf.int32)], axis=-1), } loss_dict_1 = loss_layer_1((gt_dict, pred_dict)) self.assertIn(common.PQ_STYLE_LOSS_CLASS_TERM, loss_dict_1) self.assertIn(common.PQ_STYLE_LOSS_MASK_DICE_TERM, loss_dict_1) self.assertIn(common.MASK_ID_CROSS_ENTROPY_LOSS, loss_dict_1) self.assertIn(common.INSTANCE_DISCRIMINATION_LOSS, loss_dict_1) self.assertNotIn(common.PQ_STYLE_LOSS, loss_dict_1) self.assertIn(common.PQ_STYLE_LOSS_CLASS_TERM, loss_layer_1.loss_terms) self.assertIn(common.PQ_STYLE_LOSS_MASK_DICE_TERM, loss_layer_1.loss_terms) self.assertIn(common.MASK_ID_CROSS_ENTROPY_LOSS, loss_layer_1.loss_terms) self.assertIn(common.INSTANCE_DISCRIMINATION_LOSS, loss_layer_1.loss_terms) self.assertNotIn(common.PQ_STYLE_LOSS, loss_layer_1.loss_terms) loss_dict_2 = loss_layer_2((gt_dict, pred_dict)) self.assertIn(common.PQ_STYLE_LOSS_CLASS_TERM, loss_dict_2) self.assertIn(common.PQ_STYLE_LOSS_MASK_DICE_TERM, loss_dict_2) self.assertNotIn(common.MASK_ID_CROSS_ENTROPY_LOSS, loss_dict_2) self.assertNotIn(common.INSTANCE_DISCRIMINATION_LOSS, loss_dict_2) self.assertNotIn(common.PQ_STYLE_LOSS, loss_dict_2) self.assertIn(common.PQ_STYLE_LOSS_CLASS_TERM, loss_layer_2.loss_terms) self.assertIn(common.PQ_STYLE_LOSS_MASK_DICE_TERM, loss_layer_2.loss_terms) self.assertNotIn(common.MASK_ID_CROSS_ENTROPY_LOSS, loss_layer_2.loss_terms) self.assertNotIn(common.INSTANCE_DISCRIMINATION_LOSS, loss_layer_2.loss_terms) self.assertNotIn(common.PQ_STYLE_LOSS, loss_layer_2.loss_terms) if __name__ == '__main__': tf.test.main()