Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
import tiktoken | |
from dataclasses import dataclass | |
import torch.nn as nn | |
from torch.nn import functional as F | |
class GPTConfig: | |
block_size: int = 1024 # max sequence length | |
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token | |
n_layer: int = 12 # number of layers | |
n_head: int = 12 # number of heads | |
n_embd: int = 768 # embedding dimension | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
# weight sharing | |
self.transformer.wte.weight = self.lm_head.weight | |
# weight initialization | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
std = 0.02 | |
if hasattr(module, 'NANGPT_SCALE_INIT'): | |
std *= (2 * self.config.n_layer) ** -0.5 | |
torch.nn.init.normal_(module.weight, mean = 0.0, std = std) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02) | |
def print_num_parameters(self): | |
num_params = sum(p.numel() for p in self.parameters()) | |
print(f"Number of model parameters: {num_params}") | |
def forward(self, idx, targets=None): | |
# idx is of shape (B, T) | |
B, T = idx.size() | |
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
# forward the token and posisition embeddings | |
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) | |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) | |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) | |
x = tok_emb + pos_emb | |
# forward the blocks of the transformer | |
for block in self.transformer.h: | |
x = block(x) | |
# forward the final layernorm and the classifier | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) # (B, T, vocab_size) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
def from_pretrained(cls, model_type): | |
"""Loads pretrained GPT-2 model weights from huggingface""" | |
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} | |
from transformers import GPT2LMHeadModel | |
print("loading weights from pretrained gpt: %s" % model_type) | |
# n_layer, n_head and n_embd are determined from model_type | |
config_args = { | |
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params | |
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params | |
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params | |
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params | |
}[model_type] | |
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints | |
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints | |
# create a from-scratch initialized minGPT model | |
config = GPTConfig(**config_args) | |
model = GPT(config) | |
sd = model.state_dict() | |
sd_keys = sd.keys() | |
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param | |
# init a huggingface/transformers model | |
model_hf = GPT2LMHeadModel.from_pretrained(model_type) | |
sd_hf = model_hf.state_dict() | |
# copy while ensuring all of the parameters are aligned and match in names and shapes | |
sd_keys_hf = sd_hf.keys() | |
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer | |
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) | |
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | |
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear | |
# this means that we have to transpose these weights when we import them | |
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" | |
for k in sd_keys_hf: | |
if any(k.endswith(w) for w in transposed): | |
# special treatment for the Conv1D weights we need to transpose | |
assert sd_hf[k].shape[::-1] == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k].t()) | |
else: | |
# vanilla copy over the other parameters | |
assert sd_hf[k].shape == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k]) | |
return model | |
# Load the trained model | |
def load_model(): | |
config = GPTConfig() | |
model = GPT(config) | |
try: | |
# Load the model with map_location to handle CPU-only environments | |
model.load_state_dict(torch.load('trained_model_quantized.pt', map_location=torch.device('cpu')), strict=False) | |
model.eval() # Set the model to evaluation mode | |
st.success("Model loaded successfully!") | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
return model | |
# Load the tokenizer | |
def load_tokenizer(): | |
return tiktoken.get_encoding('gpt2') | |
# Generate text function | |
def generate_text(model, tokenizer, input_text, length, num_sequences): | |
# Encode the input text | |
input_ids = tokenizer.encode(input_text) | |
input_tensor = torch.tensor(input_ids).unsqueeze(0) # Add batch dimension (shape: [1, T]) | |
generated_sequences = [] | |
for _ in range(num_sequences): | |
# Generate additional tokens | |
with torch.no_grad(): | |
for _ in range(length): | |
logits = model(input_tensor)[0] # Get logits | |
next_token_logits = logits[:, -1, :] # Get the last token's logits | |
next_token_probs = torch.softmax(next_token_logits, dim=-1) | |
next_token = torch.multinomial(next_token_probs, num_samples=1) # Sample from the distribution | |
# Ensure the next_token has the correct shape for concatenation | |
next_token = next_token.view(1, -1) # Reshape to [1, 1] if necessary | |
input_tensor = torch.cat((input_tensor, next_token), dim=1) # Append the new token | |
# Decode the generated tokens | |
generated_sequences.append(tokenizer.decode(input_tensor[0].tolist())) | |
return generated_sequences | |
# Streamlit app layout | |
st.title("GPT Text Generator") | |
st.write("Enter your text and specify the length of additional text to generate.") | |
input_text = st.text_area("Input Text", "Once upon a time", max_chars=512) # Limit to 512 characters | |
length = st.slider("Predict Additional Text of Length", 1, 50, 10) | |
num_sequences = st.slider("Number of Sequences to Generate", 1, 5, 1) | |
if st.button("Generate"): | |
model = load_model() # Load the model for inference | |
tokenizer = load_tokenizer() # Load the tokenizer | |
st.write("Generating text...") | |
generated_texts = generate_text(model, tokenizer, input_text, length, num_sequences) | |
st.write("Text generation complete.") | |
st.write("Generated Texts:") | |
for i, text in enumerate(generated_texts): | |
st.subheader(f"Sequence {i + 1}") | |
st.write(text) |