|
import streamlit as st |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
import tiktoken |
|
import sys |
|
import os |
|
import logging |
|
import warnings |
|
from dataclasses import dataclass |
|
import math |
|
|
|
class MLP(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) |
|
self.gelu = nn.GELU(approximate='tanh') |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd) |
|
self.c_proj.NANGPT_SCALE_INIT = 1 |
|
|
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
|
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
y = att @ v |
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
y = self.c_proj(y) |
|
return y |
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
@dataclass |
|
class GPTConfig: |
|
block_size: int = 1024 |
|
vocab_size: int = 50257 |
|
n_layer: int = 12 |
|
n_head: int = 12 |
|
n_embd: int = 768 |
|
|
|
|
|
class GPT(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = nn.LayerNorm(config.n_embd), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
std = 0.02 |
|
if hasattr(module, 'NANGPT_SCALE_INIT'): |
|
std *= (2 * self.config.n_layer) ** -0.5 |
|
torch.nn.init.normal_(module.weight, mean = 0.0, std = std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02) |
|
|
|
def print_num_parameters(self): |
|
num_params = sum(p.numel() for p in self.parameters()) |
|
print(f"Number of model parameters: {num_params}") |
|
|
|
def forward(self, idx, targets=None): |
|
|
|
B, T = idx.size() |
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" |
|
|
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) |
|
pos_emb = self.transformer.wpe(pos) |
|
tok_emb = self.transformer.wte(idx) |
|
x = tok_emb + pos_emb |
|
|
|
for block in self.transformer.h: |
|
x = block(x) |
|
|
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
return logits, loss |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_type): |
|
"""Loads pretrained GPT-2 model weights from huggingface""" |
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
from transformers import GPT2LMHeadModel |
|
print("loading weights from pretrained gpt: %s" % model_type) |
|
|
|
|
|
config_args = { |
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), |
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), |
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), |
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), |
|
}[model_type] |
|
config_args['vocab_size'] = 50257 |
|
config_args['block_size'] = 1024 |
|
|
|
config = GPTConfig(**config_args) |
|
model = GPT(config) |
|
sd = model.state_dict() |
|
sd_keys = sd.keys() |
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] |
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
sd_hf = model_hf.state_dict() |
|
|
|
|
|
sd_keys_hf = sd_hf.keys() |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] |
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
|
|
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" |
|
for k in sd_keys_hf: |
|
if any(k.endswith(w) for w in transposed): |
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].t()) |
|
else: |
|
|
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
|
|
return model |
|
|
|
|
|
|
|
logging.getLogger('streamlit').setLevel(logging.ERROR) |
|
warnings.filterwarnings('ignore', message='.*torch.classes.*') |
|
warnings.filterwarnings('ignore', category=FutureWarning) |
|
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
device = "cpu" |
|
config = GPTConfig() |
|
model = GPT(config) |
|
|
|
|
|
checkpoint = torch.load('trained_model_quantized.pt', map_location=device, weights_only=True) |
|
|
|
|
|
state_dict = checkpoint['model_state_dict'] |
|
new_state_dict = {} |
|
|
|
for key in model.state_dict().keys(): |
|
if key.endswith('.weight'): |
|
|
|
orig_key = key[:-7] + '.weight_orig' if key.endswith('.weight') else key |
|
mask_key = key[:-7] + '.weight_mask' if key.endswith('.weight') else key |
|
|
|
if orig_key in state_dict and mask_key in state_dict: |
|
|
|
new_state_dict[key] = state_dict[orig_key] * state_dict[mask_key] |
|
else: |
|
|
|
new_state_dict[key] = state_dict[key] if key in state_dict else model.state_dict()[key] |
|
else: |
|
|
|
new_state_dict[key] = state_dict[key] if key in state_dict else model.state_dict()[key] |
|
|
|
|
|
model.load_state_dict(new_state_dict) |
|
|
|
|
|
model = model.float() |
|
model.to(device) |
|
model.eval() |
|
|
|
return model, device |
|
|
|
def generate_text(model, prompt, max_length=100, num_return_sequences=1, device='cpu'): |
|
tokenizer = tiktoken.get_encoding('gpt2') |
|
input_tokens = tokenizer.encode(prompt) |
|
x = torch.tensor(input_tokens).unsqueeze(0).repeat(num_return_sequences, 1) |
|
x = x.to(device) |
|
|
|
|
|
input_length = x.size(1) |
|
target_length = input_length + max_length |
|
|
|
|
|
with torch.no_grad(): |
|
while x.size(1) < target_length: |
|
logits = model(x)[0] |
|
next_token_logits = logits[:, -1, :] |
|
probs = torch.softmax(next_token_logits, dim=-1) |
|
next_token = torch.multinomial(probs, num_samples=1) |
|
x = torch.cat((x, next_token), dim=1) |
|
|
|
|
|
st.text(f"Size of Input tokens: {input_length}, Additional tokens to be predicted: {max_length}, Total tokens to be generated: {x.size(1)}") |
|
|
|
|
|
generated_texts = [] |
|
for i in range(num_return_sequences): |
|
tokens = x[i].tolist() |
|
text = tokenizer.decode(tokens) |
|
generated_texts.append(text) |
|
|
|
return generated_texts |
|
|
|
|
|
st.title("GPT Text Generator") |
|
|
|
|
|
model, device = load_model() |
|
|
|
|
|
prompt = st.text_area("Enter your prompt:", "Once upon a time") |
|
max_length = st.slider("Predict additional text of length:", min_value=1, max_value=50, value=5) |
|
num_sequences = st.slider("Number of sequences to generate:", 1, 5, 1) |
|
|
|
if st.button("Generate"): |
|
with st.spinner("Generating text..."): |
|
generated_texts = generate_text( |
|
model=model, |
|
prompt=prompt, |
|
max_length=max_length, |
|
num_return_sequences=num_sequences, |
|
device=device |
|
) |
|
|
|
|
|
for i, text in enumerate(generated_texts, 1): |
|
st.write(f"\nSequence {i}:") |
|
st.write(text) |