File size: 20,751 Bytes
ceec7c0
a2d5ea0
ceec7c0
07ff622
ceec7c0
07ff622
ceec7c0
0a86c6a
 
 
 
ceec7c0
0a86c6a
afb8d0c
 
ceec7c0
0a86c6a
ceec7c0
0a86c6a
ceec7c0
0a86c6a
 
ceec7c0
0a86c6a
 
ceec7c0
 
 
0a86c6a
ceec7c0
0a86c6a
afb8d0c
0a86c6a
 
 
 
 
 
 
afb8d0c
4d71b60
 
0a86c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceec7c0
0a86c6a
 
 
 
 
 
 
 
 
 
 
ceec7c0
0a86c6a
ceec7c0
 
0a86c6a
ceec7c0
 
03738e4
 
afb8d0c
03738e4
afb8d0c
 
 
03738e4
9ac5371
afb8d0c
9ac5371
 
 
 
 
 
 
afb8d0c
9ac5371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03738e4
9ac5371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afb8d0c
 
03738e4
9ac5371
 
03738e4
9ac5371
 
 
03738e4
9ac5371
 
 
 
afb8d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac5371
 
 
0114908
9ac5371
afb8d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac5371
afb8d0c
 
 
 
03738e4
 
 
 
afb8d0c
ceec7c0
afb8d0c
 
 
 
 
 
 
 
 
 
 
 
5467082
afb8d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5467082
afb8d0c
 
 
 
5467082
afb8d0c
 
 
 
5467082
afb8d0c
 
 
0a86c6a
afb8d0c
0a86c6a
afb8d0c
0a86c6a
5467082
afb8d0c
 
 
 
 
 
 
 
03738e4
afb8d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03738e4
afb8d0c
 
 
 
 
 
03738e4
 
afb8d0c
 
 
 
 
 
03738e4
 
afb8d0c
 
 
 
03738e4
afb8d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ff622
 
 
ceec7c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import json
from datetime import datetime, date

import gradio as gr
import plotly.graph_objects as go


def create_big_five_capex_plot() -> go.Figure:
    # Read data from the JSON Lines file.
    with open("big_five_capex.jsonl", "r") as file:
        data = [json.loads(line) for line in file if line.strip()]

    quarters: list[str] = [entry["Quarter"] for entry in data]
    companies = ['Microsoft', 'Google', 'Meta', 'Amazon']
    colors = ['#80bb00', '#ee161f', '#0065e3', '#ff6200']

    x_positions = list(range(len(quarters)))

    traces = []
    for company, color in zip(companies, colors):
        y_data = [entry[company] for entry in data]
        traces.append(go.Bar(
            name=company,
            x=x_positions,
            y=y_data,
            marker_color=color
        ))

    fig = go.Figure(data=traces)
    fig.update_layout(
        barmode="stack",
        title="Capital Expenditures of Amazon, Meta, Google and Microsoft in Millions of USD per Quarter",
        xaxis_title="Quarter",
        yaxis_title="Capital Expenditures (Millions USD)",
        xaxis=dict(
            tickmode='array',
            tickvals=x_positions,
            ticktext=quarters
        ),
        height=800
    )

    # Calculate the x position for the vertical dotted line.
    # We want the line drawn between "2023 Q1" and "2023 Q2".
    try:
        idx_q1 = quarters.index("2023 Q1")
        idx_q2 = quarters.index("2023 Q2")
        vline_x = (idx_q1 + idx_q2) / 2  # position midway between the two quarters
    except ValueError:
        # Fall back if quarters not found.
        vline_x = 0

    # Add a vertical dotted line spanning the full height
    fig.add_shape(
        type="line",
        xref="x",
        yref="paper",
        x0=vline_x,
        y0=0,
        x1=vline_x,
        y1=1,
        line=dict(
            color="black",
            dash="dot",
            width=2
        )
    )

    # Add an annotation label above the vertical line.
    fig.add_annotation(
        x=vline_x,
        y=1.05,  # place just above the top of the plotting area
        xref="x",
        yref="paper",
        text="AI arms race begins",
        showarrow=False,
        font=dict(
            color="black",
            size=12
        ),
        align="center"
    )

    return fig


def create_simple_plot(data_path: str,
                       name: str,
                       subtitle: str,
                       start_date: datetime, end_date: datetime,
                       min_value: int = 0, max_value: int = 100,
                       labeled_horizontal_lines: dict[str, float] = None) -> go.Figure:
    leaderboard = []
    with open(data_path, 'r') as file:
        for line in file:
            leaderboard.append(json.loads(line))

    models = []
    with open("models.jsonl", 'r') as file:
        for line in file:
            models.append(json.loads(line))

    data = []
    for entry in leaderboard:
        model_name = entry['model']
        score = entry['score']
        model_info = next((m for m in models if m['Name'] == model_name), None)
        if model_info:
            release_date = datetime.strptime(model_info['Release Date'], "%Y-%m-%d")
            data.append({'model': model_name, 'score': score, 'release_date': release_date})
        else:
            print(f"[WARNING] Model '{model_name}' not found in models.jsonl")

    data.sort(key=lambda x: x['release_date'])

    x_dates = [d['release_date'] for d in data]
    y_scores = []
    max_score = 0
    for entry in data:
        if entry['score'] > max_score:
            max_score = entry['score']
        y_scores.append(max_score)

    fig = go.Figure()

    fig.add_trace(go.Scatter(
        x=x_dates,
        y=y_scores,
        mode='lines',
        line=dict(shape='hv', width=2),
        name='Best Score to Date'
    ))

    for i, entry in enumerate(data):
        if i == 0 or y_scores[i] > y_scores[i - 1]:
            fig.add_trace(go.Scatter(
                x=[entry['release_date']],
                y=[entry['score']],
                mode='markers+text',
                marker=dict(size=10),
                text=[entry['model']],
                textposition="top center",
                name=entry['model']
            ))

    fig.update_layout(
        title=f'{name} Over Time<br><sup>{subtitle}</sup>',
        xaxis_title='Publication or Release Date',
        yaxis_title=name,
        hovermode='x unified',
        xaxis=dict(
            range=[start_date, end_date],
            type='date'
        ),
        yaxis=dict(
            range=[min_value, max_value]
        ),
        height=800
    )

    if labeled_horizontal_lines:
        for label, y_value in labeled_horizontal_lines.items():
            fig.add_hline(
                y=y_value,
                line_dash="dot",
                line_color="black",
                annotation_text=label,
                annotation_position="right",
                annotation=dict(
                    font_size=12,
                    font_color="black",
                    xanchor="left",
                    yanchor="middle",
                    xshift=10
                )
            )

    return fig


with gr.Blocks() as demo:
    with gr.Tab("System Performance Over Time"):
        with gr.Tab("Legend"):
            legend_markdown: gr.Markdown = gr.Markdown(
                value="""
## Benchmarks and Top Scores

| Benchmark | Top Score |
|-----------|-----------|
| BigCodeBench | 🟠 36% |
| Simple Bench | 🟠 42% |
| PlanBench | 🟠 53% |
| GAIA | 🟑 65% |
| ARC-AGI-Pub (Semi-Private Eval) | 🟑 76% |
| GPQA | 🟑 76% |
| ZebraLogic | 🟑 81% |
| ARC-AGI-Pub (Public Eval) | 🟑 83% |
| ZeroEval | 🟑 86% |
| MATH-L5 | 🟑 89% |
| MMLU-Redux | 🟒 93% |
| CRUX | 🟒 96% |

## Colors

| Color | Score Range |
|-------|------------|
| πŸ”΄ Red | Below 30% |
| 🟠 Orange | 30% to 60% |
| 🟑 Yellow | 60% to 90% |
| 🟒 Green | Above 90% |"""
            )
        with gr.Tab("🟠 BigCodeBench") as bigcodebench_tab:
            bigcodebench_plot: gr.Plot = gr.Plot()
            bigcodebench_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [BigCodeBench Leaderboard](https://bigcode-bench.github.io/)"""
            )
        with gr.Tab("🟠 Simple Bench") as simple_bench_tab:
            simple_bench_plot: gr.Plot = gr.Plot()
            simple_bench_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [SimpleBench Leaderboard](https://simple-bench.com/)"""
            )
        with gr.Tab("🟠 PlanBench") as planbench_tab:
            planbench_plot: gr.Plot = gr.Plot()
            planbench_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [Valmeekam et al. 2024](https://arxiv.org/abs/2409.13373)"""
            )
        with gr.Tab("🟑 GAIA") as gaia_tab:
            gaia_plot: gr.Plot = gr.Plot()
            gaia_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [GAIA Leaderboard](https://huggingface.co/spaces/gaia-benchmark/leaderboard)"""
            )
        with gr.Tab("🟑 ARC-AGI-Pub") as arc_agi_tab:
            with gr.Tab("🟑 Semi-Private Eval") as arc_agi_semi_private_eval_tab:
                arc_agi_semi_private_eval_plot: gr.Plot = gr.Plot()
            with gr.Tab("🟑 Public Eval") as arc_agi_public_eval_tab:
                arc_agi_public_eval_plot: gr.Plot = gr.Plot()
            arc_agi_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [ARC Prize 2024](https://arcprize.org/2024-results)"""
            )
        with gr.Tab("🟑 GPQA") as gpqa_tab:
            gpqa_plot: gr.Plot = gr.Plot()
            gpqa_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [Epoch AI Benchmarking Dashboard](https://epoch.ai/data/ai-benchmarking-dashboard)"""
            )
        with gr.Tab("🟑 ZebraLogic") as zeroeval_zebralogic_tab:
            zeroeval_zebralogic_plot: gr.Plot = gr.Plot()
            zeroeval_zebralogic_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
            )
        with gr.Tab("🟑 ZeroEval") as zeroeval_average_tab:
            zeroeval_average_plot: gr.Plot = gr.Plot()
            zeroeval_average_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
            )
        with gr.Tab("🟑 MATH-L5") as zeroeval_math_l5_tab:
            zeroeval_math_l5_plot: gr.Plot = gr.Plot()
            zeroeval_math_l5_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
            )
        with gr.Tab("🟒 MMLU-Redux") as zeroeval_mmlu_redux_tab:
            zeroeval_mmlu_redux_plot: gr.Plot = gr.Plot()
            zeroeval_mmlu_redux_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
            )
        with gr.Tab("🟒 CRUX") as zeroeval_crux_tab:
            zeroeval_crux_plot: gr.Plot = gr.Plot()
            zeroeval_crux_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
            )
        with gr.Tab("Codeforces") as codeforces_tab:
            codeforces_plot: gr.Plot = gr.Plot()
        with gr.Tab("OpenCompass", visible=False):
            opencompass_plot: gr.Plot = gr.Plot()
            opencompass_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [OpenCompass LLM Leaderboard](https://huggingface.co/spaces/opencompass/opencompass-llm-leaderboard)"""
            )
        with gr.Tab("SWE-bench", visible=False):
            swe_bench_plot: gr.Plot = gr.Plot()
            swe_bench_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [SWE-bench Leaderboard](https://www.swebench.com/)"""
            )
        with gr.Tab("WebArena", visible=False):
            webarena_plot: gr.Plot = gr.Plot()
            webarena_markdown: gr.Markdown = gr.Markdown(
                value="""Source: [X-WebArena-Leaderboard](https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ)"""
            )
    with gr.Tab("Finance") as finance_tab:
        with gr.Tab("Big Tech Capex") as big_five_capex_tab:
            big_five_capex_plot: gr.Plot = gr.Plot()
        with gr.Tab("NVIDIA Revenue", visible=False) as nvidia_revenue:
            nvidia_revenue_plot: gr.Plot = gr.Plot()
    big_five_capex_tab.select(fn=create_big_five_capex_plot, outputs=big_five_capex_plot)
    arc_agi_public_eval_tab.select(fn=create_simple_plot,
                                   inputs=[gr.State("arc_agi_leaderboard.jsonl"),
                                           gr.State("ARC-AGI-Pub Score (Public Eval, $20 Compute Budget per Task, General-Purpose Systems)"),
                                           gr.State("\"ARC can be seen as a general artificial intelligence benchmark, as a program synthesis benchmark, or as a psychometric intelligence test.\" (Chollet, 2019)"),
                                           gr.State(date(2024, 5, 1)), gr.State(date(2025, 1, 1)),
                                           gr.State(0), gr.State(100),
                                           gr.State({"Humans\n(LeGris et al. 2024)": 64.2})],
                                   outputs=arc_agi_public_eval_plot)
    arc_agi_tab.select(fn=create_simple_plot,
                       inputs=[gr.State("arc_agi_semi_private_eval_leaderboard.jsonl"),
                               gr.State("ARC-AGI-Pub Score (Semi-Private Eval, $20 Compute Budget per Task, General-Purpose Systems)"),
                               gr.State("\"ARC can be seen as a general artificial intelligence benchmark, as a program synthesis benchmark, or as a psychometric intelligence test.\" (Chollet, 2019)"),
                               gr.State(date(2024, 5, 1)), gr.State(date(2025, 1, 1)),
                               gr.State(0), gr.State(100),
                               gr.State({"MTurkers": 77})],
                       outputs=arc_agi_semi_private_eval_plot)
    arc_agi_semi_private_eval_tab.select(fn=create_simple_plot,
                                         inputs=[gr.State("arc_agi_semi_private_eval_leaderboard.jsonl"),
                                                 gr.State("ARC-AGI-Pub Score (Semi-Private Eval, $20 Compute Budget per Task, General-Purpose Systems)"),
                                                 gr.State("\"ARC can be seen as a general artificial intelligence benchmark, as a program synthesis benchmark, or as a psychometric intelligence test.\" (Chollet, 2019)"),
                                                 gr.State(date(2024, 5, 1)), gr.State(date(2025, 1, 1)),
                                                 gr.State(0), gr.State(100),
                                                 gr.State({"MTurkers": 77})],
                                         outputs=arc_agi_semi_private_eval_plot)
    finance_tab.select(fn=create_big_five_capex_plot, outputs=big_five_capex_plot)
    simple_bench_tab.select(fn=create_simple_plot,
                            inputs=[gr.State("simple_bench_leaderboard.jsonl"),
                                    gr.State("Simple Bench Score"),
                                    gr.State("\"multiple-choice text benchmark [...] [including] over 200 questions covering spatio-temporal reasoning, social intelligence, and what we call linguistic adversarial robustness\" (Philip & Hemang, 2024)"),
                                    gr.State(date(2024, 4, 1)), gr.State(date(2025, 1, 1)),
                                    gr.State(0), gr.State(100),
                                    gr.State({"Humans": 83.7})],
                            outputs=simple_bench_plot)
    codeforces_tab.select(fn=create_simple_plot,
                          inputs=[gr.State("codeforces_leaderboard.jsonl"),
                                  gr.State("Codeforces Rating"),
                                  gr.State("\"[Codeforces] is a platform where [programming] contests are held regularly, the participant's skills are reflected by their rating [...] The rating is a modification of Elo rating\" (Mirzayanov, 2011)"),
                                  gr.State(date(2024, 5, 1)), gr.State(date(2025, 1, 1)),
                                  gr.State(0), gr.State(4000),
                                  gr.State({"Pupil": 1200, "Specialist": 1400, "Expert": 1600, "Candidate Master": 1900, "Master": 2100, "International Master": 2300, "Grandmaster": 2400, "International Grandmaster": 2600, "Legendary Grandmaster": 3000})],
                          outputs=codeforces_plot)
    planbench_tab.select(fn=create_simple_plot,
                         inputs=[gr.State("planbench_leaderboard.jsonl"),
                                 gr.State("PlanBench Score (Mystery Blocksworld, 0-shot)"),
                                 gr.State("\"benchmark suite based on the kinds of domains used in the automated planning community [...] to test the capabilities of LLMs in planning or reasoning about actions and change.\" (Valmeekam et al. 2022)"),
                                 gr.State(date(2023, 3, 1)), gr.State(date(2024, 9, 20))],
                         outputs=planbench_plot)
    bigcodebench_tab.select(fn=create_simple_plot,
                            inputs=[gr.State("bigcodebench_hard_average_leaderboard.jsonl"),
                                    gr.State("BigCodeBench Score (Hard, Average of Complete and Instruct)"),
                                    gr.State("\"benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks\" (Zhuo et al. 2024)"),
                                    gr.State(date(2023, 6, 1)), gr.State(date(2025, 1, 1))],
                            outputs=bigcodebench_plot)
    gaia_tab.select(fn=create_simple_plot,
                    inputs=[gr.State("gaia_leaderboard.jsonl"),
                            gr.State("General AI Assistants (GAIA) Benchmark Score (Test Set, Average)"),
                            gr.State("\"real-world questions that require a set of fundamental abilities such as reasoning, multi-modality handling, web browsing, and generally tool-use proficiency\" (Mialon et al. 2023)"),
                            gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1)),
                            gr.State(0), gr.State(100),
                            gr.State({"Humans": 92})],
                    outputs=gaia_plot)
    gpqa_tab.select(fn=create_simple_plot,
                    inputs=[gr.State("gpqa_leaderboard.jsonl"),
                            gr.State("Graduate-Level Google-Proof Q&A (GPQA) Benchmark Score"),
                            gr.State("\"challenging dataset of 448 multiple-choice questions written by domain experts in biology, physics, and chemistry [that] are high-quality and extremely difficult\" (Rein et al. 2023)"),
                            gr.State(date(2023, 6, 1)), gr.State(date(2025, 1, 1)),
                            gr.State(25), gr.State(100),
                            gr.State({"Highly skilled non-expert validators": 34, "PhD-level domain experts": 65})],
                    outputs=gpqa_plot)
    zeroeval_average_tab.select(fn=create_simple_plot,
                                inputs=[gr.State("zeroeval_average_leaderboard.jsonl"),
                                        gr.State("ZeroEval Average (MMLU-Redux, ZebraLogic, CRUX and MATH-5) Score"),
                                        gr.State("\"a simple unified framework for evaluating language models on various tasks\" (Ai2, 2024)"),
                                        gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))],
                                outputs=zeroeval_average_plot)
    zeroeval_mmlu_redux_tab.select(fn=create_simple_plot,
                                   inputs=[gr.State("zeroeval_mmlu_redux_leaderboard.jsonl"),
                                           gr.State("ZeroEval MMLU-Redux (Massive Multitask Language Understanding) Score"),
                                           gr.State("\"knowledge reasoning\" (Ai2, 2024); \"subset of 3,000 manually re-annotated questions across 30 MMLU subjects\" (Gema et al. 2024)"),
                                           gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))],
                                   outputs=zeroeval_mmlu_redux_plot)
    zeroeval_zebralogic_tab.select(fn=create_simple_plot,
                                   inputs=[gr.State("zeroeval_zebralogic_leaderboard.jsonl"),
                                           gr.State("ZeroEval ZebraLogic Score"),
                                           gr.State("\"logical reasoning\" (Ai2, 2024); \"Each example is a Logic Grid Puzzle [...] often used to test humans' logical reasoning abilities\" (Lin, 2024)"),
                                           gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))],
                                   outputs=zeroeval_zebralogic_plot)
    zeroeval_crux_tab.select(fn=create_simple_plot,
                             inputs=[gr.State("zeroeval_crux_leaderboard.jsonl"),
                                     gr.State("ZeroEval CRUX (Code Reasoning, Understanding, and eXecution Evaluation) Score"),
                                     gr.State("\"code reasoning\" (Ai2, 2024); \"benchmark consisting of 800 Python functions (3-13 lines). Each function comes with [...] two natural tasks: input prediction and output prediction.\" (Gu et al. 2024)"),
                                     gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))],
                             outputs=zeroeval_crux_plot)
    zeroeval_math_l5_tab.select(fn=create_simple_plot,
                                inputs=[gr.State("zeroeval_math_l5_leaderboard.jsonl"),
                                        gr.State("ZeroEval MATH-L5 (Difficulty Level 5 of MATH) Score"),
                                        gr.State("\"math reasoning\" (Ai2, 2024); \"dataset of 12,500 challenging competition mathematics problems. [...] a subject’s hardest problems are assigned a difficulty level of β€˜5.’\" (Hendrycks et al. 2021)"),
                                        gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))],
                                outputs=zeroeval_math_l5_plot)


if __name__ == "__main__":
    demo.launch()