Spaces:
Running
Running
import streamlit as st | |
from huggingface_hub import login | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
import torch | |
import os | |
def initialize_model(): | |
"""Initialize the model and tokenizer""" | |
# Log in to Hugging Face | |
token = os.environ.get("hf") | |
login(token) | |
# Define the model ID and device | |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Configure INT8 quantization | |
bnb_config = BitsAndBytesConfig( | |
load_in_8bit=True, | |
llm_int8_enable_fp32_cpu_offload=True | |
) | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
quantization_config=bnb_config, | |
device_map="auto" | |
) | |
# Ensure padding token is defined | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
return model, tokenizer, device | |
def format_conversation(conversation_history): | |
"""Format the conversation history into a single string.""" | |
formatted = "" | |
for turn in conversation_history: | |
formatted += f"User: {turn['user']}\nAssistant: {turn['assistant']}\n" | |
return formatted.strip() | |
def generate_response(model, tokenizer, device, prompt, conversation_history): | |
"""Generate model response""" | |
# Format the entire conversation context | |
context = format_conversation(conversation_history[:-1]) | |
if context: | |
full_prompt = f"{context}\nUser: {prompt}" | |
else: | |
full_prompt = f"User: {prompt}" | |
# Tokenize input | |
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device) | |
# Calculate max new tokens | |
input_length = inputs["input_ids"].shape[1] | |
max_model_length = 2048 | |
max_new_tokens = min(200, max_model_length - input_length) | |
# Generate response | |
outputs = model.generate( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
max_new_tokens=max_new_tokens, | |
temperature=0.7, | |
top_p=0.9, | |
pad_token_id=tokenizer.pad_token_id, | |
do_sample=True, | |
min_length=20, | |
no_repeat_ngram_size=3 | |
) | |
# Decode response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response_parts = response.split("User: ") | |
model_response = response_parts[-1].split("Assistant: ")[-1].strip() | |
return model_response | |
def main(): | |
st.set_page_config(page_title="LLM Chat Interface", page_icon="π€") | |
st.title("Chat with LLM π€") | |
# Initialize session state for chat history | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
# Initialize model (only once) | |
if "model" not in st.session_state: | |
with st.spinner("Loading the model... This might take a minute..."): | |
model, tokenizer, device = initialize_model() | |
st.session_state.model = model | |
st.session_state.tokenizer = tokenizer | |
st.session_state.device = device | |
# Display chat messages | |
for message in st.session_state.chat_history: | |
with st.chat_message("user"): | |
st.write(message["user"]) | |
with st.chat_message("assistant"): | |
st.write(message["assistant"]) | |
# Chat input | |
if prompt := st.chat_input("What would you like to know?"): | |
# Display user message | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Generate and display assistant response | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
current_turn = {"user": prompt, "assistant": ""} | |
st.session_state.chat_history.append(current_turn) | |
response = generate_response( | |
st.session_state.model, | |
st.session_state.tokenizer, | |
st.session_state.device, | |
prompt, | |
st.session_state.chat_history | |
) | |
st.write(response) | |
st.session_state.chat_history[-1]["assistant"] = response | |
# Manage context window | |
if len(st.session_state.chat_history) > 5: | |
st.session_state.chat_history = st.session_state.chat_history[-5:] | |
# Add a clear chat button | |
if st.sidebar.button("Clear Chat"): | |
st.session_state.chat_history = [] | |
st.rerun() | |
if __name__ == "__main__": | |
main() |