Spaces:
Running
Running
import streamlit as st | |
from huggingface_hub import login | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from transformers import BitsAndBytesConfig | |
import os | |
def initialize_model(): | |
"""Initialize the model and tokenizer with CPU support""" | |
# Log in to Hugging Face | |
token = os.environ.get("hf") | |
if token: | |
login(token) | |
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
try: | |
# Try with regular CPU mode first (simpler and more reliable) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="cpu", | |
trust_remote_code=True, | |
low_cpu_mem_usage=True | |
) | |
except Exception as e: | |
print(f"Error loading model: {str(e)}") | |
raise e | |
# Ensure padding token is defined | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
return model, tokenizer | |
def format_prompt(user_input, conversation_history=[]): | |
"""Format the prompt according to TinyLlama's expected chat format""" | |
messages = [] | |
# Add conversation history | |
for turn in conversation_history: | |
messages.append({"role": "user", "content": turn["user"]}) | |
messages.append({"role": "assistant", "content": turn["assistant"]}) | |
# Add current user input | |
messages.append({"role": "user", "content": user_input}) | |
# Format into TinyLlama chat format | |
formatted_prompt = "<|system|>You are a helpful AI assistant.</s>" | |
for message in messages: | |
if message["role"] == "user": | |
formatted_prompt += f"<|user|>{message['content']}</s>" | |
else: | |
formatted_prompt += f"<|assistant|>{message['content']}</s>" | |
formatted_prompt += "<|assistant|>" | |
return formatted_prompt | |
def generate_response(model, tokenizer, prompt, conversation_history): | |
"""Generate model response""" | |
try: | |
# Format prompt using TinyLlama's chat template | |
formatted_prompt = format_prompt(prompt, conversation_history[:-1]) | |
# Tokenize input | |
inputs = tokenizer(formatted_prompt, return_tensors="pt", padding=True, truncation=True) | |
# Move inputs to the same device as the model | |
device = next(model.parameters()).device | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Calculate max new tokens | |
input_length = inputs["input_ids"].shape[1] | |
max_model_length = 1024 | |
max_new_tokens = min(150, max_model_length - input_length) | |
# Generate response | |
outputs = model.generate( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
max_new_tokens=max_new_tokens, | |
temperature=0.7, | |
top_p=0.9, | |
pad_token_id=tokenizer.pad_token_id, | |
do_sample=True, | |
min_length=10, | |
no_repeat_ngram_size=3, | |
eos_token_id=tokenizer.encode("</s>")[0] # Set end token | |
) | |
# Decode response and extract only the assistant's message | |
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
# Extract only the last assistant response | |
assistant_response = full_response.split("<|assistant|>")[-1].split("</s>")[0].strip() | |
return assistant_response if assistant_response else "I apologize, but I couldn't generate a proper response." | |
except RuntimeError as e: | |
if "out of memory" in str(e): | |
torch.cuda.empty_cache() | |
return "I apologize, but I ran out of memory. Please try a shorter message or clear the chat history." | |
else: | |
return f"An error occurred: {str(e)}" | |
def main(): | |
st.set_page_config( | |
page_title="LLM Chat Interface", | |
page_icon="π€", | |
layout="wide" | |
) | |
# Add CSS to make the chat interface more compact | |
st.markdown(""" | |
<style> | |
.stChat { | |
padding-top: 0rem; | |
} | |
.stChatMessage { | |
padding: 0.5rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.title("Chat with TinyLlama π€") | |
# Initialize session state for chat history | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
# Initialize model (only once) | |
if "model" not in st.session_state: | |
with st.spinner("Loading the model... This might take a minute..."): | |
try: | |
model, tokenizer = initialize_model() | |
st.session_state.model = model | |
st.session_state.tokenizer = tokenizer | |
st.success("Model loaded successfully!") | |
except Exception as e: | |
st.error(f"Error loading model: {str(e)}") | |
return | |
# Display chat messages | |
for message in st.session_state.chat_history: | |
with st.chat_message("user"): | |
st.write(message["user"]) | |
with st.chat_message("assistant"): | |
st.write(message["assistant"]) | |
# Chat input | |
if prompt := st.chat_input("What would you like to know?"): | |
# Display user message | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Generate and display assistant response | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
current_turn = {"user": prompt, "assistant": ""} | |
st.session_state.chat_history.append(current_turn) | |
response = generate_response( | |
st.session_state.model, | |
st.session_state.tokenizer, | |
prompt, | |
st.session_state.chat_history | |
) | |
st.write(response) | |
st.session_state.chat_history[-1]["assistant"] = response | |
# Manage context window | |
if len(st.session_state.chat_history) > 5: | |
st.session_state.chat_history = st.session_state.chat_history[-5:] | |
# Sidebar controls | |
with st.sidebar: | |
st.title("Controls") | |
if st.button("Clear Chat"): | |
st.session_state.chat_history = [] | |
st.rerun() | |
st.markdown("---") | |
st.markdown(""" | |
### Model Info | |
- Using TinyLlama 1.1B Chat | |
- CPU optimized | |
- Context window: 1024 tokens | |
""") | |
if __name__ == "__main__": | |
main() |