Spaces:
Running
Running
File size: 6,626 Bytes
fccfdf4 7ec6449 0d5774d fccfdf4 0d5774d ef628bc fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d ef628bc fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 0d5774d fccfdf4 7077c22 fccfdf4 0d5774d ef628bc fccfdf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import streamlit as st
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from transformers import BitsAndBytesConfig
import os
def initialize_model():
"""Initialize the model and tokenizer with CPU support"""
# Log in to Hugging Face
token = os.environ.get("hf")
if token:
login(token)
# Use a smaller model that's more CPU-friendly
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Much smaller model
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Configure 4-bit quantization for CPU
try:
# First try with bitsandbytes 4-bit quantization
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
except:
# Fallback to CPU without quantization
print("Falling back to CPU without quantization")
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cpu",
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Ensure padding token is defined
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
def format_conversation(conversation_history):
"""Format the conversation history into a single string."""
formatted = ""
for turn in conversation_history:
formatted += f"Human: {turn['user']}\nAssistant: {turn['assistant']}\n"
return formatted.strip()
def generate_response(model, tokenizer, prompt, conversation_history):
"""Generate model response"""
# Format the entire conversation context
context = format_conversation(conversation_history[:-1])
if context:
full_prompt = f"{context}\nHuman: {prompt}"
else:
full_prompt = f"Human: {prompt}"
# Tokenize input
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True)
# Move inputs to the same device as the model
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Calculate max new tokens
input_length = inputs["input_ids"].shape[1]
max_model_length = 1024 # Reduced context window for memory efficiency
max_new_tokens = min(150, max_model_length - input_length)
try:
# Generate response with lower temperature for faster generation
outputs = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=max_new_tokens,
temperature=0.5, # Lower temperature for faster, more focused responses
top_p=0.9,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
min_length=10, # Reduced minimum length
no_repeat_ngram_size=3
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_parts = response.split("Human: ")
model_response = response_parts[-1].split("Assistant: ")[-1].strip()
return model_response
except RuntimeError as e:
if "out of memory" in str(e):
torch.cuda.empty_cache()
return "I apologize, but I ran out of memory. Please try a shorter message or clear the chat history."
else:
return f"An error occurred: {str(e)}"
def main():
st.set_page_config(
page_title="LLM Chat Interface",
page_icon="🤖",
layout="wide"
)
# Add CSS to make the chat interface more compact
st.markdown("""
<style>
.stChat {
padding-top: 0rem;
}
.stChatMessage {
padding: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
st.title("Welcome to LowCode No Code Demo")
# Initialize session state for chat history
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Initialize model (only once)
if "model" not in st.session_state:
with st.spinner("Loading the model... This might take a minute..."):
try:
model, tokenizer = initialize_model()
st.session_state.model = model
st.session_state.tokenizer = tokenizer
st.success("Model loaded successfully!")
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return
# Display chat messages
for message in st.session_state.chat_history:
with st.chat_message("user"):
st.write(message["user"])
with st.chat_message("assistant"):
st.write(message["assistant"])
# Chat input
if prompt := st.chat_input("What would you like to know?"):
# Display user message
with st.chat_message("user"):
st.write(prompt)
# Generate and display assistant response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
current_turn = {"user": prompt, "assistant": ""}
st.session_state.chat_history.append(current_turn)
response = generate_response(
st.session_state.model,
st.session_state.tokenizer,
prompt,
st.session_state.chat_history
)
st.write(response)
st.session_state.chat_history[-1]["assistant"] = response
# Manage context window
if len(st.session_state.chat_history) > 5:
st.session_state.chat_history = st.session_state.chat_history[-5:]
# Sidebar controls
with st.sidebar:
st.title("Controls")
if st.button("Clear Chat"):
st.session_state.chat_history = []
st.rerun()
st.markdown("---")
st.markdown("""
### Model Info
- Using TinyLlama 1.1B Chat
- Optimized for CPU usage
- Context window: 1024 tokens
""")
if __name__ == "__main__":
main() |