import streamlit as st from transformers import pipeline from datasets import load_dataset # load the dataset and # use the patent number, abstract and claim columns for UI with st.spinner("Setting up the app..."): dataset_dict = load_dataset( "HUPD/hupd", name="sample", data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather", icpr_label=None, train_filing_start_date="2016-01-01", train_filing_end_date="2016-01-21", val_filing_start_date="2016-01-22", val_filing_end_date="2016-01-31", ) # widget for selecting our finetuned langugae model language_model_path = "juliaannjose/finetuned_model" # pass the model to transformers pipeline - model selection component. classifier_model = pipeline(model=language_model_path) # drop down menu with patent numbers _patent_id = st.selectbox( "Select the Patent Number", dataset_dict["train"]["patent_number"], ) if _patent_id: # get abstract and claim corresponding to this patent id _abstract = dataset_dict["train"][["patent_number"] == _patent_id]["abstract"] _claim = dataset_dict["train"][["patent_number"] == _patent_id]["claims"] # display abstract and claim st.write(_abstract) st.write(_claim) # when submit button clicked, run the model and get result if st.button("Submit"): results = classifier_model([_abstract + _claim]) st.write(results)