import gradio as gr import torch from diffusers import LTXPipeline from diffusers.utils import export_to_video import tempfile import random # Load the LTX Video model pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16) pipe.to("cuda") def generate_video(prompt, negative_prompt, height, width, num_frames, num_inference_steps, seed): if seed == -1: seed = random.randint(0, 2**32 - 1) generator = torch.Generator(device="cuda").manual_seed(seed) video = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=num_frames, num_inference_steps=num_inference_steps, generator=generator ).frames[0] # Export video to temporary file with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: export_to_video(video, tmpfile.name, fps=24) return tmpfile.name # Gradio Interface title = "LTX-Video Generator" description = "Generate high-quality videos from text using the Lightricks LTX-Video model." with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}\n{description}") with gr.Row(): prompt = gr.Textbox(label="Prompt", value="A woman with long brown hair and light skin smiles at another woman...", lines=5) negative_prompt = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=5) with gr.Row(): height = gr.Slider(minimum=64, maximum=720, step=32, value=480, label="Height") width = gr.Slider(minimum=64, maximum=1280, step=32, value=704, label="Width") num_frames = gr.Slider(minimum=9, maximum=257, step=8, value=161, label="Number of Frames") num_inference_steps = gr.Slider(minimum=10, maximum=100, step=1, value=50, label="Inference Steps") seed = gr.Number(value=-1, label="Seed (set -1 for random)") generate_btn = gr.Button("Generate Video") output_video = gr.Video(label="Generated Video") generate_btn.click( fn=generate_video, inputs=[prompt, negative_prompt, height, width, num_frames, num_inference_steps, seed], outputs=output_video ) demo.launch()