Spaces:
Sleeping
Sleeping
Update app.py
Browse fileschanged folder name
app.py
CHANGED
@@ -1,126 +1,126 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torchvision.utils as vutils
|
4 |
-
import gradio as gr
|
5 |
-
import numpy as np
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
|
9 |
-
# Define Generator architecture - must match what you used during training
|
10 |
-
class Generator(nn.Module):
|
11 |
-
def __init__(self, ngpu=1, nz=100, ngf=64, nc=3):
|
12 |
-
super(Generator, self).__init__()
|
13 |
-
self.ngpu = ngpu
|
14 |
-
self.main = nn.Sequential(
|
15 |
-
# input is Z, going into a convolution
|
16 |
-
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
|
17 |
-
nn.BatchNorm2d(ngf * 8),
|
18 |
-
nn.ReLU(True),
|
19 |
-
# state size. (ngf*8) x 4 x 4
|
20 |
-
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
|
21 |
-
nn.BatchNorm2d(ngf * 4),
|
22 |
-
nn.ReLU(True),
|
23 |
-
# state size. (ngf*4) x 8 x 8
|
24 |
-
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
|
25 |
-
nn.BatchNorm2d(ngf * 2),
|
26 |
-
nn.ReLU(True),
|
27 |
-
# state size. (ngf*2) x 16 x 16
|
28 |
-
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
|
29 |
-
nn.BatchNorm2d(ngf),
|
30 |
-
nn.ReLU(True),
|
31 |
-
# state size. (ngf) x 32 x 32
|
32 |
-
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
|
33 |
-
nn.Tanh()
|
34 |
-
# state size. (nc) x 64 x 64
|
35 |
-
)
|
36 |
-
|
37 |
-
def forward(self, input):
|
38 |
-
return self.main(input)
|
39 |
-
|
40 |
-
|
41 |
-
# Load the generator
|
42 |
-
def load_model(model_path="
|
43 |
-
# Create the generator and load the saved weights
|
44 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
45 |
-
netG = Generator(ngpu=1, nz=100, ngf=64, nc=3).to(device)
|
46 |
-
|
47 |
-
try:
|
48 |
-
netG.load_state_dict(torch.load(model_path, map_location=device))
|
49 |
-
netG.eval() # Set to evaluation mode
|
50 |
-
print(f"Model loaded successfully from {model_path}")
|
51 |
-
return netG, device
|
52 |
-
except Exception as e:
|
53 |
-
print(f"Error loading model: {e}")
|
54 |
-
return None, device
|
55 |
-
|
56 |
-
|
57 |
-
# Generate images using the model
|
58 |
-
def generate_images(num_images=16, seed=None, randomize=True):
|
59 |
-
# Load the model (do this once when needed)
|
60 |
-
global model, device
|
61 |
-
if 'model' not in globals():
|
62 |
-
model, device = load_model()
|
63 |
-
if model is None:
|
64 |
-
return np.zeros((299, 299, 3))
|
65 |
-
|
66 |
-
# Set random seed for reproducibility if provided
|
67 |
-
if seed is not None and not randomize:
|
68 |
-
torch.manual_seed(seed)
|
69 |
-
np.random.seed(seed)
|
70 |
-
|
71 |
-
# Generate latent vectors
|
72 |
-
nz = 100 # Size of the latent vector
|
73 |
-
noise = torch.randn(num_images, nz, 1, 1, device=device)
|
74 |
-
|
75 |
-
# Generate fake images
|
76 |
-
with torch.no_grad():
|
77 |
-
fake_images = model(noise).detach().cpu()
|
78 |
-
|
79 |
-
# Convert to grid for display
|
80 |
-
grid = vutils.make_grid(fake_images, padding=2, normalize=True, nrow=int(np.sqrt(num_images)))
|
81 |
-
|
82 |
-
# Convert from tensor to numpy array for Gradio
|
83 |
-
grid_np = grid.numpy().transpose((1, 2, 0))
|
84 |
-
|
85 |
-
# Make sure values are in 0-1 range
|
86 |
-
grid_np = np.clip(grid_np, 0, 1)
|
87 |
-
|
88 |
-
return grid_np
|
89 |
-
|
90 |
-
|
91 |
-
# Create Gradio interface
|
92 |
-
def create_gradio_app():
|
93 |
-
with gr.Blocks(title="Computer Mouse Generator") as app:
|
94 |
-
gr.Markdown("# Computer Mouse GAN Generator")
|
95 |
-
gr.Markdown("Generate computer mice using a Deep Convolutional GAN trained on ~2,500 augmented images")
|
96 |
-
|
97 |
-
with gr.Row():
|
98 |
-
with gr.Column():
|
99 |
-
num_images = gr.Slider(minimum=1, maximum=64, value=16, step=1, label="Number of Images")
|
100 |
-
seed = gr.Number(label="Random Seed", value=42, precision=0)
|
101 |
-
randomize = gr.Checkbox(label="Use Random Seeds (ignore seed value)", value=True)
|
102 |
-
generate_button = gr.Button("Generate Mice")
|
103 |
-
|
104 |
-
with gr.Column():
|
105 |
-
output_image = gr.Image(label="Generated Computer Mice")
|
106 |
-
|
107 |
-
generate_button.click(fn=generate_images, inputs=[num_images, seed, randomize], outputs=output_image)
|
108 |
-
|
109 |
-
gr.Markdown("## About")
|
110 |
-
gr.Markdown("""This model was trained using a PyTorch DCGAN implementation on a dataset of computer mouse images.
|
111 |
-
|
112 |
-
The training process used data augmentation to expand a small dataset of 300+ original images into 2,500+ training samples through techniques like flipping, rotation, and brightness/contrast adjustments.
|
113 |
-
|
114 |
-
The generator creates brand new, never-before-seen computer mice from random noise!""")
|
115 |
-
|
116 |
-
return app
|
117 |
-
|
118 |
-
|
119 |
-
# Initialize global variables
|
120 |
-
model = None
|
121 |
-
device = None
|
122 |
-
|
123 |
-
# Launch the app if the script is run directly
|
124 |
-
if __name__ == "__main__":
|
125 |
-
app = create_gradio_app()
|
126 |
app.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.utils as vutils
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
# Define Generator architecture - must match what you used during training
|
10 |
+
class Generator(nn.Module):
|
11 |
+
def __init__(self, ngpu=1, nz=100, ngf=64, nc=3):
|
12 |
+
super(Generator, self).__init__()
|
13 |
+
self.ngpu = ngpu
|
14 |
+
self.main = nn.Sequential(
|
15 |
+
# input is Z, going into a convolution
|
16 |
+
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
|
17 |
+
nn.BatchNorm2d(ngf * 8),
|
18 |
+
nn.ReLU(True),
|
19 |
+
# state size. (ngf*8) x 4 x 4
|
20 |
+
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
|
21 |
+
nn.BatchNorm2d(ngf * 4),
|
22 |
+
nn.ReLU(True),
|
23 |
+
# state size. (ngf*4) x 8 x 8
|
24 |
+
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
|
25 |
+
nn.BatchNorm2d(ngf * 2),
|
26 |
+
nn.ReLU(True),
|
27 |
+
# state size. (ngf*2) x 16 x 16
|
28 |
+
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
|
29 |
+
nn.BatchNorm2d(ngf),
|
30 |
+
nn.ReLU(True),
|
31 |
+
# state size. (ngf) x 32 x 32
|
32 |
+
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
|
33 |
+
nn.Tanh()
|
34 |
+
# state size. (nc) x 64 x 64
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, input):
|
38 |
+
return self.main(input)
|
39 |
+
|
40 |
+
|
41 |
+
# Load the generator
|
42 |
+
def load_model(model_path="models/netG_best.pth"):
|
43 |
+
# Create the generator and load the saved weights
|
44 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
45 |
+
netG = Generator(ngpu=1, nz=100, ngf=64, nc=3).to(device)
|
46 |
+
|
47 |
+
try:
|
48 |
+
netG.load_state_dict(torch.load(model_path, map_location=device))
|
49 |
+
netG.eval() # Set to evaluation mode
|
50 |
+
print(f"Model loaded successfully from {model_path}")
|
51 |
+
return netG, device
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error loading model: {e}")
|
54 |
+
return None, device
|
55 |
+
|
56 |
+
|
57 |
+
# Generate images using the model
|
58 |
+
def generate_images(num_images=16, seed=None, randomize=True):
|
59 |
+
# Load the model (do this once when needed)
|
60 |
+
global model, device
|
61 |
+
if 'model' not in globals():
|
62 |
+
model, device = load_model()
|
63 |
+
if model is None:
|
64 |
+
return np.zeros((299, 299, 3))
|
65 |
+
|
66 |
+
# Set random seed for reproducibility if provided
|
67 |
+
if seed is not None and not randomize:
|
68 |
+
torch.manual_seed(seed)
|
69 |
+
np.random.seed(seed)
|
70 |
+
|
71 |
+
# Generate latent vectors
|
72 |
+
nz = 100 # Size of the latent vector
|
73 |
+
noise = torch.randn(num_images, nz, 1, 1, device=device)
|
74 |
+
|
75 |
+
# Generate fake images
|
76 |
+
with torch.no_grad():
|
77 |
+
fake_images = model(noise).detach().cpu()
|
78 |
+
|
79 |
+
# Convert to grid for display
|
80 |
+
grid = vutils.make_grid(fake_images, padding=2, normalize=True, nrow=int(np.sqrt(num_images)))
|
81 |
+
|
82 |
+
# Convert from tensor to numpy array for Gradio
|
83 |
+
grid_np = grid.numpy().transpose((1, 2, 0))
|
84 |
+
|
85 |
+
# Make sure values are in 0-1 range
|
86 |
+
grid_np = np.clip(grid_np, 0, 1)
|
87 |
+
|
88 |
+
return grid_np
|
89 |
+
|
90 |
+
|
91 |
+
# Create Gradio interface
|
92 |
+
def create_gradio_app():
|
93 |
+
with gr.Blocks(title="Computer Mouse Generator") as app:
|
94 |
+
gr.Markdown("# Computer Mouse GAN Generator")
|
95 |
+
gr.Markdown("Generate computer mice using a Deep Convolutional GAN trained on ~2,500 augmented images")
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
num_images = gr.Slider(minimum=1, maximum=64, value=16, step=1, label="Number of Images")
|
100 |
+
seed = gr.Number(label="Random Seed", value=42, precision=0)
|
101 |
+
randomize = gr.Checkbox(label="Use Random Seeds (ignore seed value)", value=True)
|
102 |
+
generate_button = gr.Button("Generate Mice")
|
103 |
+
|
104 |
+
with gr.Column():
|
105 |
+
output_image = gr.Image(label="Generated Computer Mice")
|
106 |
+
|
107 |
+
generate_button.click(fn=generate_images, inputs=[num_images, seed, randomize], outputs=output_image)
|
108 |
+
|
109 |
+
gr.Markdown("## About")
|
110 |
+
gr.Markdown("""This model was trained using a PyTorch DCGAN implementation on a dataset of computer mouse images.
|
111 |
+
|
112 |
+
The training process used data augmentation to expand a small dataset of 300+ original images into 2,500+ training samples through techniques like flipping, rotation, and brightness/contrast adjustments.
|
113 |
+
|
114 |
+
The generator creates brand new, never-before-seen computer mice from random noise!""")
|
115 |
+
|
116 |
+
return app
|
117 |
+
|
118 |
+
|
119 |
+
# Initialize global variables
|
120 |
+
model = None
|
121 |
+
device = None
|
122 |
+
|
123 |
+
# Launch the app if the script is run directly
|
124 |
+
if __name__ == "__main__":
|
125 |
+
app = create_gradio_app()
|
126 |
app.launch()
|