ju4nppp's picture
Uploaded 3 files
e352aba verified
raw
history blame
4.63 kB
import torch
import torch.nn as nn
import torchvision.utils as vutils
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# Define Generator architecture - must match what you used during training
class Generator(nn.Module):
def __init__(self, ngpu=1, nz=100, ngf=64, nc=3):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
return self.main(input)
# Load the generator
def load_model(model_path="model/netG_best.pth"):
# Create the generator and load the saved weights
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
netG = Generator(ngpu=1, nz=100, ngf=64, nc=3).to(device)
try:
netG.load_state_dict(torch.load(model_path, map_location=device))
netG.eval() # Set to evaluation mode
print(f"Model loaded successfully from {model_path}")
return netG, device
except Exception as e:
print(f"Error loading model: {e}")
return None, device
# Generate images using the model
def generate_images(num_images=16, seed=None, randomize=True):
# Load the model (do this once when needed)
global model, device
if 'model' not in globals():
model, device = load_model()
if model is None:
return np.zeros((299, 299, 3))
# Set random seed for reproducibility if provided
if seed is not None and not randomize:
torch.manual_seed(seed)
np.random.seed(seed)
# Generate latent vectors
nz = 100 # Size of the latent vector
noise = torch.randn(num_images, nz, 1, 1, device=device)
# Generate fake images
with torch.no_grad():
fake_images = model(noise).detach().cpu()
# Convert to grid for display
grid = vutils.make_grid(fake_images, padding=2, normalize=True, nrow=int(np.sqrt(num_images)))
# Convert from tensor to numpy array for Gradio
grid_np = grid.numpy().transpose((1, 2, 0))
# Make sure values are in 0-1 range
grid_np = np.clip(grid_np, 0, 1)
return grid_np
# Create Gradio interface
def create_gradio_app():
with gr.Blocks(title="Computer Mouse Generator") as app:
gr.Markdown("# Computer Mouse GAN Generator")
gr.Markdown("Generate computer mice using a Deep Convolutional GAN trained on ~2,500 augmented images")
with gr.Row():
with gr.Column():
num_images = gr.Slider(minimum=1, maximum=64, value=16, step=1, label="Number of Images")
seed = gr.Number(label="Random Seed", value=42, precision=0)
randomize = gr.Checkbox(label="Use Random Seeds (ignore seed value)", value=True)
generate_button = gr.Button("Generate Mice")
with gr.Column():
output_image = gr.Image(label="Generated Computer Mice")
generate_button.click(fn=generate_images, inputs=[num_images, seed, randomize], outputs=output_image)
gr.Markdown("## About")
gr.Markdown("""This model was trained using a PyTorch DCGAN implementation on a dataset of computer mouse images.
The training process used data augmentation to expand a small dataset of 300+ original images into 2,500+ training samples through techniques like flipping, rotation, and brightness/contrast adjustments.
The generator creates brand new, never-before-seen computer mice from random noise!""")
return app
# Initialize global variables
model = None
device = None
# Launch the app if the script is run directly
if __name__ == "__main__":
app = create_gradio_app()
app.launch()