Spaces:
Runtime error
Runtime error
Joshua Sundance Bailey
commited on
Commit
·
c132355
1
Parent(s):
d94be33
rm bm25 & fix docstore kwarg
Browse files
langchain-streamlit-demo/app.py
CHANGED
|
@@ -17,9 +17,8 @@ from streamlit_feedback import streamlit_feedback
|
|
| 17 |
from defaults import default_values
|
| 18 |
|
| 19 |
from llm_resources import (
|
| 20 |
-
get_runnable,
|
| 21 |
-
get_llm,
|
| 22 |
-
get_texts_and_retriever,
|
| 23 |
get_texts_and_multiretriever,
|
| 24 |
StreamHandler,
|
| 25 |
)
|
|
|
|
| 17 |
from defaults import default_values
|
| 18 |
|
| 19 |
from llm_resources import (
|
| 20 |
+
get_runnable,
|
| 21 |
+
get_llm,
|
|
|
|
| 22 |
get_texts_and_multiretriever,
|
| 23 |
StreamHandler,
|
| 24 |
)
|
langchain-streamlit-demo/llm_resources.py
CHANGED
|
@@ -11,7 +11,7 @@ from langchain.chat_models import (
|
|
| 11 |
)
|
| 12 |
from langchain.document_loaders import PyPDFLoader
|
| 13 |
from langchain.embeddings import AzureOpenAIEmbeddings, OpenAIEmbeddings
|
| 14 |
-
from langchain.retrievers import
|
| 15 |
from langchain.schema import Document, BaseRetriever
|
| 16 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
from langchain.vectorstores import FAISS
|
|
@@ -116,48 +116,6 @@ def get_llm(
|
|
| 116 |
return None
|
| 117 |
|
| 118 |
|
| 119 |
-
def get_texts_and_retriever(
|
| 120 |
-
uploaded_file_bytes: bytes,
|
| 121 |
-
openai_api_key: str,
|
| 122 |
-
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
| 123 |
-
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
| 124 |
-
k: int = DEFAULT_RETRIEVER_K,
|
| 125 |
-
azure_kwargs: Optional[Dict[str, str]] = None,
|
| 126 |
-
use_azure: bool = False,
|
| 127 |
-
) -> Tuple[List[Document], BaseRetriever]:
|
| 128 |
-
with NamedTemporaryFile() as temp_file:
|
| 129 |
-
temp_file.write(uploaded_file_bytes)
|
| 130 |
-
temp_file.seek(0)
|
| 131 |
-
|
| 132 |
-
loader = PyPDFLoader(temp_file.name)
|
| 133 |
-
documents = loader.load()
|
| 134 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 135 |
-
chunk_size=chunk_size,
|
| 136 |
-
chunk_overlap=chunk_overlap,
|
| 137 |
-
)
|
| 138 |
-
texts = text_splitter.split_documents(documents)
|
| 139 |
-
embeddings_kwargs = {"openai_api_key": openai_api_key}
|
| 140 |
-
if use_azure and azure_kwargs:
|
| 141 |
-
azure_kwargs["azure_endpoint"] = azure_kwargs.pop("openai_api_base")
|
| 142 |
-
embeddings_kwargs.update(azure_kwargs)
|
| 143 |
-
embeddings = AzureOpenAIEmbeddings(**embeddings_kwargs)
|
| 144 |
-
else:
|
| 145 |
-
embeddings = OpenAIEmbeddings(**embeddings_kwargs)
|
| 146 |
-
|
| 147 |
-
bm25_retriever = BM25Retriever.from_documents(texts)
|
| 148 |
-
bm25_retriever.k = k
|
| 149 |
-
|
| 150 |
-
faiss_vectorstore = FAISS.from_documents(texts, embeddings)
|
| 151 |
-
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": k})
|
| 152 |
-
|
| 153 |
-
ensemble_retriever = EnsembleRetriever(
|
| 154 |
-
retrievers=[bm25_retriever, faiss_retriever],
|
| 155 |
-
weights=[0.5, 0.5],
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
return texts, ensemble_retriever
|
| 159 |
-
|
| 160 |
-
|
| 161 |
def get_texts_and_multiretriever(
|
| 162 |
uploaded_file_bytes: bytes,
|
| 163 |
openai_api_key: str,
|
|
@@ -204,7 +162,7 @@ def get_texts_and_multiretriever(
|
|
| 204 |
multivectorstore = FAISS.from_documents(sub_texts, embeddings)
|
| 205 |
multivector_retriever = MultiVectorRetriever(
|
| 206 |
vectorstore=multivectorstore,
|
| 207 |
-
|
| 208 |
id_key=id_key,
|
| 209 |
)
|
| 210 |
multivector_retriever.docstore.mset(list(zip(text_ids, texts)))
|
|
|
|
| 11 |
)
|
| 12 |
from langchain.document_loaders import PyPDFLoader
|
| 13 |
from langchain.embeddings import AzureOpenAIEmbeddings, OpenAIEmbeddings
|
| 14 |
+
from langchain.retrievers import EnsembleRetriever
|
| 15 |
from langchain.schema import Document, BaseRetriever
|
| 16 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
from langchain.vectorstores import FAISS
|
|
|
|
| 116 |
return None
|
| 117 |
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
def get_texts_and_multiretriever(
|
| 120 |
uploaded_file_bytes: bytes,
|
| 121 |
openai_api_key: str,
|
|
|
|
| 162 |
multivectorstore = FAISS.from_documents(sub_texts, embeddings)
|
| 163 |
multivector_retriever = MultiVectorRetriever(
|
| 164 |
vectorstore=multivectorstore,
|
| 165 |
+
docstore=store,
|
| 166 |
id_key=id_key,
|
| 167 |
)
|
| 168 |
multivector_retriever.docstore.mset(list(zip(text_ids, texts)))
|
requirements.txt
CHANGED
|
@@ -7,7 +7,6 @@ openai==1.3.8
|
|
| 7 |
pillow>=10.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
| 8 |
pyarrow>=14.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
| 9 |
pypdf==3.17.2
|
| 10 |
-
rank_bm25==0.2.2
|
| 11 |
streamlit==1.29.0
|
| 12 |
streamlit-feedback==0.1.3
|
| 13 |
tiktoken==0.5.2
|
|
|
|
| 7 |
pillow>=10.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
| 8 |
pyarrow>=14.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
| 9 |
pypdf==3.17.2
|
|
|
|
| 10 |
streamlit==1.29.0
|
| 11 |
streamlit-feedback==0.1.3
|
| 12 |
tiktoken==0.5.2
|