File size: 1,459 Bytes
52ed70c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# mean and std in RGB order, actually this part should remain unchanged as long as your dataset is similar to coco.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]

# this is coco anchors, change it if necessary
#anchors_scales: '[2 ** 0, 2 ** 1/3, 2 ** 2/3]'
#anchors_ratios: '[(0.7, 1.4), (1.0, 1.0), (1.4, 0.7)]'

#anchors_scales: '[5.125, 0.625, 1.625]'
#anchors_ratios: '[(1, 0.7317073170731707), (1, 0.85), (1, 0.7884615384615384)]'

anchors_scales: '[2**0, 2**0.70, 2**1.32]'
anchors_ratios: '[(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)]'

# must match your dataset's category_id.
# category_id is one_indexed,
# for example, index of 'car' here is 2, while category_id of is 3
#obj_list: ['pedestrian',
#          'rider',
#          'car',
#          'truck',
#          'bus',
#          'train',
#          'motorcycle',
#          'bicycle',
#          'traffic light',
#          'traffic sign']

obj_list: ['car']

seg_list: ['road',
          'lane']

dataset:
  color_rgb: false
  dataroot: ./datasets/bdd100k
  labelroot: ./datasets/data2/zwt/bdd/bdd100k/labels/100k
  laneroot: ./datasets/bdd_lane_gt
  maskroot: ./datasets/bdd_seg_gt
  data_format: jpg
  flip: true
  hsv_h: 0.015
  hsv_s: 0.7
  hsv_v: 0.4
  org_img_size:
  - 720
  - 1280
  rot_factor: 10
  scale_factor: 0.25
  shear: 0.0
  test_set: val
  train_set: train
  translate: 0.1
model:
  image_size:
  - 640
  - 384
need_autoanchor: false
pin_memory: false
num_seg_class: 2