Spaces:
Runtime error
Runtime error
File size: 14,916 Bytes
6aa1df0 9a9ed43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
---
title: {{HybridNet-Demo}}
emoji: {{emoji}}
colorFrom: {{colorFrom}}
colorTo: {{colorTo}}
sdk: {{sdk}}
sdk_version: {{sdkVersion}}
app_file: app.py
pinned: false
---
# HybridNets: End2End Perception Network
<div align="center">

**HybridNets Network Architecture.**
[](https://github.com/datvuthanh/HybridNets/blob/main/LICENSE)
[](https://pytorch.org/get-started/locally/)
[](https://www.python.org/downloads/)
<br>
<!-- [![Contributors][contributors-shield]][contributors-url]
[![Forks][forks-shield]][forks-url]
[![Stargazers][stars-shield]][stars-url]
[![Issues][issues-shield]][issues-url] -->
</div>
> [**HybridNets: End-to-End Perception Network**](https://arxiv.org/abs/2203.09035)
>
> by Dat Vu, Bao Ngo, [Hung Phan](https://scholar.google.com/citations?user=V3paQH8AAAAJ&hl=vi&oi=ao)<sup> :email:</sup> [*FPT University*](https://uni.fpt.edu.vn/en-US/Default.aspx)
>
> (<sup>:email:</sup>) corresponding author.
>
> *arXiv technical report ([arXiv 2203.09035](https://arxiv.org/abs/2203.09035))*
[](https://paperswithcode.com/sota/traffic-object-detection-on-bdd100k?p=hybridnets-end-to-end-perception-network-1)
[](https://paperswithcode.com/sota/lane-detection-on-bdd100k?p=hybridnets-end-to-end-perception-network-1)
<!-- TABLE OF CONTENTS -->
<details>
<summary>Table of Contents</summary>
<ol>
<li>
<a href="#about-the-project">About The Project</a>
<ul>
<li><a href="#project-structure">Project Structure</a></li>
</ul>
</li>
<li>
<a href="#getting-started">Getting Started</a>
<ul>
<li><a href="#installation">Installation</a></li>
<li><a href="#demo">Demo</a></li>
</ul>
</li>
<li>
<a href="#usage">Usage</a>
<ul>
<li><a href="#data-preparation">Data Preparation</a></li>
<li><a href="#training">Training</a></li>
</ul>
</li>
<li><a href="#training-tips">Training Tips</a></li>
<li><a href="#results">Results</a></li>
<li><a href="#license">License</a></li>
<li><a href="#acknowledgements">Acknowledgements</a></li>
<li><a href="#citation">Citation</a></li>
</ol>
</details>
## About The Project
<!-- #### <div align=center> **HybridNets** = **real-time** :stopwatch: * **state-of-the-art** :1st_place_medal: * (traffic object detection + drivable area segmentation + lane line detection) :motorway: </div> -->
HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic object detection, drivable area segmentation and lane detection. HybridNets can run real-time on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset.

### Project Structure
```bash
HybridNets
β backbone.py # Model configuration
β hubconf.py # Pytorch Hub entrypoint
β hybridnets_test.py # Image inference
β hybridnets_test_videos.py # Video inference
β train.py # Train script
β val.py # Validate script
β
ββββencoders # https://github.com/qubvel/segmentation_models.pytorch/tree/master/segmentation_models_pytorch/encoders
β ...
β
ββββhybridnets
β autoanchor.py # Generate new anchors by k-means
β dataset.py # BDD100K dataset
β loss.py # Focal, tversky (dice)
β model.py # Model blocks
β
ββββprojects
β bdd100k.yml # Project configuration
β
ββββutils
β plot.py # Draw bounding box
β smp_metrics.py # https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/metrics/functional.py
β utils.py # Various helper functions (preprocess, postprocess, eval...)
β
ββββsync_batchnorm # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch/tree/master/sync_batchnorm
...
```
## Getting Started [](https://colab.research.google.com/drive/1Uc1ZPoPeh-lAhPQ1CloiVUsOIRAVOGWA?usp=sharing)
### Installation
The project was developed with [**Python>=3.7**](https://www.python.org/downloads/) and [**Pytorch>=1.10**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/datvuthanh/HybridNets
cd HybridNets
pip install -r requirements.txt
```
### Demo
```bash
# Download end-to-end weights
mkdir weights
curl -L -o weights/hybridnets.pth https://github.com/datvuthanh/HybridNets/releases/download/v1.0/hybridnets.pth
# Image inference
python hybridnets_test.py -w weights/hybridnets.pth --source demo/image --output demo_result --imshow False --imwrite True
# Video inference
python hybridnets_test_videos.py -w weights/hybridnets.pth --source demo/video --output demo_result
# Result is saved in a new folder called demo_result
```
## Usage
### Data Preparation
Recommended dataset structure:
```bash
HybridNets
ββββdatasets
ββββimgs
β ββββtrain
β ββββval
ββββdet_annot
β ββββtrain
β ββββval
ββββda_seg_annot
β ββββtrain
β ββββval
ββββll_seg_annot
ββββtrain
ββββval
```
Update your dataset paths in `projects/your_project_name.yml`.
For BDD100K: [imgs](https://bdd-data.berkeley.edu/), [det_annot](https://drive.google.com/file/d/19CEnZzgLXNNYh1wCvUlNi8UfiBkxVRH0/view), [da_seg_annot](https://drive.google.com/file/d/1NZM-xqJJYZ3bADgLCdrFOa5Vlen3JlkZ/view), [ll_seg_annot](https://drive.google.com/file/d/1o-XpIvHJq0TVUrwlwiMGzwP1CtFsfQ6t/view)
### Training
#### 1) Edit or create a new project configuration, using bdd100k.yml as a template
```python
# mean and std of dataset in RGB order
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
# bdd100k anchors
anchors_scales: '[2**0, 2**0.70, 2**1.32]'
anchors_ratios: '[(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)]'
# must match your dataset's category_id.
# category_id is one_indexed,
# for example, index of 'car' here is 0, while category_id is 1
obj_list: ['car']
seg_list: ['road',
'lane']
dataset:
color_rgb: false
dataroot: path/to/imgs
labelroot: path/to/det_annot
laneroot: path/to/ll_seg_annot
maskroot: path/to/da_seg_annot
...
```
#### 2) Train
```bash
python train.py -p bdd100k # your_project_name
-c 3 # coefficient of effnet backbone, result from paper is 3
-n 4 # num_workers
-b 8 # batch_size per gpu
-w path/to/weight # use 'last' to resume training from previous session
--freeze_det # freeze detection head, others: --freeze_backbone, --freeze_seg
--lr 1e-5 # learning rate
--optim adamw # adamw | sgd
--num_epochs 200
```
Please check `python train.py --help` for every available arguments.
#### 3) Evaluate
```bash
python val.py -p bdd100k -c 3 -w checkpoints/weight.pth
```
## Training Tips
### Anchors :anchor:
If your dataset is intrinsically different from COCO or BDD100K, or the metrics of detection after training are not as high as expected, you could try enabling autoanchor in `project.yml`:
```python
...
model:
image_size:
- 640
- 384
need_autoanchor: true # set to true to run autoanchor
pin_memory: false
...
```
This automatically finds the best combination of anchor scales and anchor ratios for your dataset. Then you can manually edit them `project.yml` and disable autoanchor.
If you're feeling lucky, maybe mess around with base_anchor_scale in `backbone.py`:
```python
class HybridNetsBackbone(nn.Module):
...
self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6]
self.anchor_scale = [1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,]
self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
...
```
and `model.py`:
```python
class Anchors(nn.Module):
...
for scale, ratio in itertools.product(self.scales, self.ratios):
base_anchor_size = self.anchor_scale * stride * scale
anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0
anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0
...
```
to get a grasp on how anchor boxes work.
And because a picture is worth a thousand words, you can visualize your anchor boxes in [Anchor Computation Tool](https://github.com/Cli98/anchor_computation_tool).
### Training stages
We experimented with training stages and found that this settings achieved the best results:
1. `--freeze_seg True` ~ 100 epochs
2. `--freeze_backbone True --freeze_det True` ~ 50 epochs
3. Train end-to-end ~ 50 epochs
The reason being detection head is harder to converge early on, so we basically skipped segmentation head to focus on detection first.
## Results
### Traffic Object Detection
<table>
<tr><th>Result </th><th>Visualization</th></tr>
<tr><td>
| Model | Recall (%) | mAP@0.5 (%) |
|:------------------:|:------------:|:---------------:|
| `MultiNet` | 81.3 | 60.2 |
| `DLT-Net` | 89.4 | 68.4 |
| `Faster R-CNN` | 77.2 | 55.6 |
| `YOLOv5s` | 86.8 | 77.2 |
| `YOLOP` | 89.2 | 76.5 |
| **`HybridNets`** | **92.8** | **77.3** |
</td><td>
<img src="images/det1.jpg" width="50%" /><img src="images/det2.jpg" width="50%" />
</td></tr> </table>
<!--
| Model | Recall (%) | mAP@0.5 (%) |
|:------------------:|:------------:|:---------------:|
| `MultiNet` | 81.3 | 60.2 |
| `DLT-Net` | 89.4 | 68.4 |
| `Faster R-CNN` | 77.2 | 55.6 |
| `YOLOv5s` | 86.8 | 77.2 |
| `YOLOP` | 89.2 | 76.5 |
| **`HybridNets`** | **92.8** | **77.3** |
<p align="middle">
<img src="images/det1.jpg" width="49%" />
<img src="images/det2.jpg" width="49%" />
</p>
-->
### Drivable Area Segmentation
<table>
<tr><th>Result </th><th>Visualization</th></tr>
<tr><td>
| Model | Drivable mIoU (%) |
|:----------------:|:-----------------:|
| `MultiNet` | 71.6 |
| `DLT-Net` | 71.3 |
| `PSPNet` | 89.6 |
| `YOLOP` | 91.5 |
| **`HybridNets`** | **90.5** |
</td><td>
<img src="images/road1.jpg" width="50%" /><img src="images/road2.jpg" width="50%" />
</td></tr> </table>
<!--
| Model | Drivable mIoU (%) |
|:----------------:|:-----------------:|
| `MultiNet` | 71.6 |
| `DLT-Net` | 71.3 |
| `PSPNet` | 89.6 |
| `YOLOP` | 91.5 |
| **`HybridNets`** | **90.5** |
<p align="middle">
<img src="images/road1.jpg" width="49%" />
<img src="images/road2.jpg" width="49%" />
</p>
-->
### Lane Line Detection
<table>
<tr><th>Result </th><th>Visualization</th></tr>
<tr><td>
| Model | Accuracy (%) | Lane Line IoU (%) |
|:----------------:|:------------:|:-----------------:|
| `Enet` | 34.12 | 14.64 |
| `SCNN` | 35.79 | 15.84 |
| `Enet-SAD` | 36.56 | 16.02 |
| `YOLOP` | 70.5 | 26.2 |
| **`HybridNets`** | **85.4** | **31.6** |
</td><td>
<img src="images/lane1.jpg" width="50%" /><img src="images/lane2.jpg" width="50%" />
</td></tr> </table>
<!--
| Model | Accuracy (%) | Lane Line IoU (%) |
|:----------------:|:------------:|:-----------------:|
| `Enet` | 34.12 | 14.64 |
| `SCNN` | 35.79 | 15.84 |
| `Enet-SAD` | 36.56 | 16.02 |
| `YOLOP` | 70.5 | 26.2 |
| **`HybridNets`** | **85.4** | **31.6** |
<p align="middle">
<img src="images/lane1.jpg" width="49%" />
<img src="images/lane2.jpg" width="49%" />
</p>
-->
<div align="center">

[Original footage](https://www.youtube.com/watch?v=lx4yA1LEi9c) courtesy of [Hanoi Life](https://www.youtube.com/channel/UChT1Cpf_URepCpsdIqjsDHQ)
</div>
## License
Distributed under the MIT License. See `LICENSE` for more information.
## Acknowledgements
Our work would not be complete without the wonderful work of the following authors:
* [EfficientDet](https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch)
* [YOLOv5](https://github.com/ultralytics/yolov5)
* [YOLOP](https://github.com/hustvl/YOLOP)
* [KMeans Anchors Ratios](https://github.com/mnslarcher/kmeans-anchors-ratios)
* [Anchor Computation Tool](https://github.com/Cli98/anchor_computation_tool)
## Citation
If you find our paper and code useful for your research, please consider giving a star :star: and citation :pencil: :
```BibTeX
@misc{vu2022hybridnets,
title={HybridNets: End-to-End Perception Network},
author={Dat Vu and Bao Ngo and Hung Phan},
year={2022},
eprint={2203.09035},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!-- MARKDOWN LINKS & IMAGES -->
<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
[contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge
[contributors-url]: https://github.com/datvuthanh/HybridNets/graphs/contributors
[forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge
[forks-url]: https://github.com/datvuthanh/HybridNets/network/members
[stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge
[stars-url]: https://github.com/datvuthanh/HybridNets/stargazers
[issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge
[issues-url]: https://github.com/datvuthanh/HybridNets/issues
|