Spaces:
Configuration error
Configuration error
File size: 7,539 Bytes
b81628e ac1bb79 b81628e ac1bb79 b81628e ac1bb79 b81628e ac1bb79 b81628e ac1bb79 b81628e ac1bb79 b81628e ac1bb79 b81628e ac1bb79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import numpy as np
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {Expected Calibration Error},
authors={Jordy Van Landeghem},
year={2022}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
# TODO
def bin_idx_dd(P, bins):
oneDbins = np.digitize(P, bins) - 1 # since bins contains extra righmost&leftmost bins
# Tie-breaking to the left for rightmost bin
# Using `digitize`, values that fall on an edge are put in the right bin.
# For the rightmost bin, we want values equal to the right
# edge to be counted in the last bin, and not as an outlier.
for k in range(P.shape[-1]):
# Find the rounding precision
dedges_min = np.diff(bins).min()
if dedges_min == 0:
raise ValueError('The smallest edge difference is numerically 0.')
decimal = int(-np.log10(dedges_min)) + 6
# Find which points are on the rightmost edge.
on_edge = np.where(
(P[:, k] >= bins[-1]) & (np.around(P[:, k], decimal) == np.around(bins[-1], decimal))
)[0]
# Shift these points one bin to the left.
oneDbins[on_edge, k] -= 1
return oneDbins
def manual_binned_statistic(P, y_correct, bins, statistic="mean"):
binnumbers = bin_idx_dd(np.expand_dims(P, 0), bins)[0]
result = np.empty([len(bins)], float)
result.fill(np.nan)
flatcount = np.bincount(binnumbers, None)
a = flatcount.nonzero()
if statistic == 'mean':
flatsum = np.bincount(binnumbers, y_correct)
result[a] = flatsum[a] / flatcount[a]
return result, bins, binnumbers + 1 # fix for what happens in bin_idx_dd
def CE_estimate(y_correct, P, bins=None, n_bins=10, p=1):
"""
y_correct: binary (N x 1)
P: normalized (N x 1) either max or per class
Summary: weighted average over the accuracy/confidence difference of equal-range bins
"""
# defaults:
if bins is None:
n_bins = n_bins
bin_range = [0, 1]
bins = np.linspace(bin_range[0], bin_range[1], n_bins + 1)
# expected; equal range binning
else:
n_bins = len(bins) - 1
bin_range = [min(bins), max(bins)]
# average bin probability #55 for bin 50-60; mean per bin
calibrated_acc = bins[1:] # right/upper bin edges
# calibrated_acc = bin_centers(bins)
empirical_acc, bin_edges, bin_assignment = manual_binned_statistic(P, y_correct, bins)
bin_numbers, weights_ece = np.unique(bin_assignment, return_counts=True)
anindices = bin_numbers - 1 # reduce bin counts; left edge; indexes right BY DEFAULT
# Expected calibration error
if p < np.inf: # Lp-CE
CE = np.average(
abs(empirical_acc[anindices] - calibrated_acc[anindices]) ** p,
weights=weights_ece, # weighted average 1/binfreq
)
elif np.isinf(p): # max-ECE
CE = np.max(abs(empirical_acc[anindices] - calibrated_acc[anindices]))
return CE
def top_CE(Y, P, **kwargs):
y_correct = (Y == np.argmax(P, -1)).astype(int)
p_max = np.max(P, -1)
top_CE = CE_estimate(y_correct, p_max, **kwargs) # can choose n_bins and norm
return top_CE
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ECE(evaluate.EvaluationModule):
"""TODO: Short description of my evaluation module."""
"""
0. create binning scheme [discretization of f]
1. build histogram P(f(X))
2. build conditional density estimate P(y|f(X))
3. average bin probabilities f_B as center/edge of bin
4. apply L^p norm distance and weights
"""
#have to add to initialization here?
#create bins using the params
#create proxy
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.EvaluationModuleInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('float32'),
'references': datasets.Value('int64'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage", #https://huggingface.co/spaces/jordyvl/ece
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self, predictions, references):
"""Returns the scores"""
ECE = top_CE(references, predictions)
return {
"ECE": ECE,
}
def test_ECE():
N = 10 #10 instances
K = 5 #5 class problem
def random_mc_instance(concentration=1):
reference = np.argmax(np.random.dirichlet(([concentration for _ in range(K)])),-1)
prediction = np.random.dirichlet(([concentration for _ in range(K)])) #probabilities
#OH #return np.eye(K)[np.argmax(reference,-1)]
return reference, prediction
references, predictions = list(zip(*[random_mc_instance() for i in range(N)]))
references = np.array(references, dtype=np.int64)
predictions = np.array(predictions, dtype=np.float32)
res = ECE()._compute(predictions, references)
print(f"ECE: {res['ECE']}")
if __name__ == '__main__':
test_ECE() |