File size: 7,539 Bytes
b81628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac1bb79
b81628e
 
 
 
 
ac1bb79
 
 
b81628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac1bb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b81628e
 
 
 
ac1bb79
 
 
 
 
 
 
 
 
 
 
 
b81628e
 
 
 
 
 
 
 
 
 
ac1bb79
b81628e
 
 
ac1bb79
b81628e
 
 
 
 
 
 
 
 
 
 
 
ac1bb79
b81628e
ac1bb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import numpy as np


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {Expected Calibration Error},
authors={Jordy Van Landeghem},
year={2022}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


# TODO

def bin_idx_dd(P, bins):
    oneDbins = np.digitize(P, bins) - 1  # since bins contains extra righmost&leftmost bins

    # Tie-breaking to the left for rightmost bin
    # Using `digitize`, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right
    # edge to be counted in the last bin, and not as an outlier.

    for k in range(P.shape[-1]):
        # Find the rounding precision
        dedges_min = np.diff(bins).min()
        if dedges_min == 0:
            raise ValueError('The smallest edge difference is numerically 0.')

        decimal = int(-np.log10(dedges_min)) + 6

        # Find which points are on the rightmost edge.
        on_edge = np.where(
            (P[:, k] >= bins[-1]) & (np.around(P[:, k], decimal) == np.around(bins[-1], decimal))
        )[0]
        # Shift these points one bin to the left.
        oneDbins[on_edge, k] -= 1

    return oneDbins


def manual_binned_statistic(P, y_correct, bins, statistic="mean"):

    binnumbers = bin_idx_dd(np.expand_dims(P, 0), bins)[0]
    result = np.empty([len(bins)], float)
    result.fill(np.nan)

    flatcount = np.bincount(binnumbers, None)
    a = flatcount.nonzero()

    if statistic == 'mean':
        flatsum = np.bincount(binnumbers, y_correct)
        result[a] = flatsum[a] / flatcount[a]
    return result, bins, binnumbers + 1  # fix for what happens in bin_idx_dd

def CE_estimate(y_correct, P, bins=None, n_bins=10, p=1):
    """
    y_correct: binary (N x 1)
    P: normalized (N x 1) either max or per class

    Summary: weighted average over the accuracy/confidence difference of equal-range bins
    """

    # defaults:
    if bins is None:
        n_bins = n_bins
        bin_range = [0, 1]
        bins = np.linspace(bin_range[0], bin_range[1], n_bins + 1)
        # expected; equal range binning
    else:
        n_bins = len(bins) - 1
        bin_range = [min(bins), max(bins)]

    # average bin probability #55 for bin 50-60; mean per bin
    calibrated_acc = bins[1:]  # right/upper bin edges
    # calibrated_acc = bin_centers(bins)


    empirical_acc, bin_edges, bin_assignment = manual_binned_statistic(P, y_correct, bins)
    bin_numbers, weights_ece = np.unique(bin_assignment, return_counts=True)
    anindices = bin_numbers - 1  # reduce bin counts; left edge; indexes right BY DEFAULT

    # Expected calibration error
    if p < np.inf:  # Lp-CE
        CE = np.average(
            abs(empirical_acc[anindices] - calibrated_acc[anindices]) ** p,
            weights=weights_ece,  # weighted average 1/binfreq
        )
    elif np.isinf(p):  # max-ECE
        CE = np.max(abs(empirical_acc[anindices] - calibrated_acc[anindices]))

    return CE

def top_CE(Y, P, **kwargs):
    y_correct = (Y == np.argmax(P, -1)).astype(int)
    p_max = np.max(P, -1)
    top_CE = CE_estimate(y_correct, p_max, **kwargs)  # can choose n_bins and norm
    return top_CE


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ECE(evaluate.EvaluationModule):
    """TODO: Short description of my evaluation module."""

    """
    0. create binning scheme [discretization of f]
    1. build histogram P(f(X))
    2. build conditional density estimate P(y|f(X))
    3. average bin probabilities f_B as center/edge of bin
    4. apply L^p norm distance and weights
    """

    #have to add to initialization here?
    #create bins using the params
    #create proxy

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.EvaluationModuleInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('float32'),
                'references': datasets.Value('int64'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage", #https://huggingface.co/spaces/jordyvl/ece
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, predictions, references):
        """Returns the scores"""
        ECE = top_CE(references, predictions)
        return {
            "ECE": ECE,
        }


def test_ECE():
    N = 10 #10 instances
    K = 5 #5 class problem

    def random_mc_instance(concentration=1):
        reference = np.argmax(np.random.dirichlet(([concentration for _ in range(K)])),-1)
        prediction = np.random.dirichlet(([concentration for _ in range(K)])) #probabilities
        #OH #return np.eye(K)[np.argmax(reference,-1)]
        return reference, prediction

    references, predictions = list(zip(*[random_mc_instance() for i in range(N)]))
    references = np.array(references, dtype=np.int64)
    predictions = np.array(predictions, dtype=np.float32)
    res = ECE()._compute(predictions, references)
    print(f"ECE: {res['ECE']}")

if __name__ == '__main__':
    test_ECE()