Spaces:
Configuration error
Configuration error
File size: 4,919 Bytes
b81628e 3f722df b81628e 3f722df b81628e 0c94397 543b514 a3659c1 543b514 3f722df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import evaluate
import numpy as np
import pandas as pd
import ast
import json
import gradio as gr
from evaluate.utils import launch_gradio_widget
from ece import ECE
sliders = [
gr.Slider(0, 100, value=10, label="n_bins"),
gr.Slider(0, 100, value=None, label="bin_range", visible=False), #DEV: need to have a double slider
gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]
slider_defaults = [slider.value for slider in sliders]
# example data
df = dict()
df["predictions"] = [[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1, 0.2]]
df["references"] = [0, 1, 2]
component = gr.inputs.Dataframe(
headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)
component.value = [
[[0.6, 0.2, 0.2], 0],
[[0.7, 0.1, 0.2], 2],
[[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults] ##json.dumps(df)
metric = ECE()
# module = evaluate.load("jordyvl/ece")
# launch_gradio_widget(module)
"""
Switch inputs and compute_fn
"""
def reliability_plot(results):
#CE, calibrated_acc, empirical_acc, weights_ece
#{"ECE": ECE[0], "y_bar": ECE[1], "p_bar": ECE[2], "bin_freq": ECE[3]}
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
sns.set_context("paper", font_scale=1) # 2
# plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams['figure.dpi'] = 300
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
n_bins = len(results["y_bar"])
bin_range = [
results["y_bar"][0] - results["y_bar"][0],
results["y_bar"][-1],
] # np.linspace(0, 1, n_bins)
# if upper edge then minus binsize; same for center [but half]
ax1.plot(
np.linspace(bin_range[0], bin_range[1], n_bins),
np.linspace(bin_range[0], bin_range[1], n_bins),
color="darkgreen",
ls="dotted",
label="Perfect",
)
# ax1.plot(results["y_bar"], results["y_bar"], color="darkblue", label="Perfect")
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
bin_freqs = np.zeros(n_bins)
bin_freqs[anindices] = results["bin_freq"]
ax2.hist(results["y_bar"], results["y_bar"], weights=bin_freqs)
widths = np.diff(results["y_bar"])
for j, bin in enumerate(results["y_bar"]):
perfect = results["y_bar"][j]
empirical = results["p_bar"][j]
if np.isnan(empirical):
continue
ax1.bar([perfect], height=[empirical], width=-widths[j], align="edge", color="lightblue")
if perfect == empirical:
continue
acc_plt = ax2.axvline(
x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy"
)
conf_plt = ax2.axvline(
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
)
ax2.legend(handles=[acc_plt, conf_plt])
#Bin differences
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([-0.05, 1.05]) #respective to bin range
ax1.legend(loc="lower right")
ax1.set_title("Reliability Diagram")
#Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left")#, ncol=2
plt.tight_layout()
return fig
def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
# DEV: check on invalid datatypes with better warnings
if isinstance(data, pd.DataFrame):
data.dropna(inplace=True)
predictions = [
ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
for prediction in data["predictions"]
]
references = [reference for reference in data["references"]]
results = metric._compute(
predictions,
references,
n_bins=n_bins,
# bin_range=None,#not needed
scheme=scheme,
proxy=proxy,
p=p,
detail=True,
)
plot = reliability_plot(results)
return results["ECE"], plt.gcf()
outputs = [gr.outputs.Textbox(label="ECE"), gr.outputs.Plot(label="Reliability diagram")]
iface = gr.Interface(
fn=compute_and_plot,
inputs=[component] + sliders,
outputs=outputs,
description=metric.info.description,
article=metric.info.citation,
# examples=sample_data
)
# ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
iface.launch()
# dict = {"ECE": ECE[0], "y_bar": ECE[1], "p_bar": ECE[2], "bin_freq": ECE[3]}
# references=[0, 1, 2], predictions=)
# https://gradio.app/getting_started/#multiple-inputs-and-outputs
## fix with sliders for all kwargs
"""
DEV: #might be nice to also plot reliability diagram
have sliders for kwargs :)
metric = ECE()
"""
|