Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ cli_args = get_cli_args()
|
|
20 |
|
21 |
DEFAULT_CONFIG = {
|
22 |
'model_path': 'BAAI/bge-base-en-v1.5',
|
23 |
-
'dataset_path': '
|
24 |
'vector_size': 768,
|
25 |
'embedding_field': 'embedding',
|
26 |
'id_field': 'id'
|
@@ -30,6 +30,24 @@ config = DEFAULT_CONFIG.copy()
|
|
30 |
config.update(cli_args)
|
31 |
config['vector_size'] = int(config['vector_size'])
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
@st.cache_resource
|
34 |
def get_model(model_path: str = config['model_path']):
|
35 |
return SentenceModel(model_path)
|
@@ -40,10 +58,19 @@ def create_retriever(vector_sz: int, dataset_path: str, embedding_field: str, id
|
|
40 |
retriever.load_jsonl(dataset_path, embedding_field=embedding_field, id_field=id_field)
|
41 |
return retriever
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
model = get_model(config['model_path'])
|
49 |
retriever = create_retriever(config['vector_size'], config['dataset_path'], config['embedding_field'], config['id_field'], _model=model)
|
@@ -73,7 +100,8 @@ st.markdown("""
|
|
73 |
</style>
|
74 |
""", unsafe_allow_html=True)
|
75 |
|
76 |
-
st.
|
|
|
77 |
|
78 |
col1, col2 = st.columns([4, 1])
|
79 |
with col1:
|
@@ -81,13 +109,18 @@ with col1:
|
|
81 |
with col2:
|
82 |
search_clicked = st.button("🔎 Search", use_container_width=True)
|
83 |
|
84 |
-
top_k = st.slider("
|
85 |
|
|
|
86 |
if search_clicked and query:
|
87 |
rec_ids, scores = retriever.search_return_id(query, top_k)
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
92 |
styled_results = results_df.style.apply(
|
93 |
lambda x: [
|
@@ -96,18 +129,18 @@ if search_clicked and query:
|
|
96 |
],
|
97 |
axis=0,
|
98 |
).format({"relevance": "{:.4f}"})
|
99 |
-
|
100 |
st.dataframe(
|
101 |
styled_results,
|
102 |
column_config={
|
103 |
-
"tool": st.column_config.TextColumn("tool", help="tool help text", width="medium"),
|
104 |
"relevance": st.column_config.ProgressColumn(
|
105 |
"relevance",
|
106 |
help="记录与查询的匹配程度",
|
107 |
format="%.4f",
|
108 |
min_value=0,
|
109 |
max_value=float(max(scores)) if len(scores) > 0 else 1,
|
110 |
-
)
|
|
|
111 |
},
|
112 |
hide_index=True,
|
113 |
use_container_width=True,
|
|
|
20 |
|
21 |
DEFAULT_CONFIG = {
|
22 |
'model_path': 'BAAI/bge-base-en-v1.5',
|
23 |
+
'dataset_path': 'extracted_tool_embedding.jsonl',
|
24 |
'vector_size': 768,
|
25 |
'embedding_field': 'embedding',
|
26 |
'id_field': 'id'
|
|
|
30 |
config.update(cli_args)
|
31 |
config['vector_size'] = int(config['vector_size'])
|
32 |
|
33 |
+
|
34 |
+
#加载数据
|
35 |
+
from datasets import load_dataset
|
36 |
+
from datasets import concatenate_datasets
|
37 |
+
ds1 = load_dataset("mangopy/ToolRet-Tools", "code")
|
38 |
+
ds2 = load_dataset("mangopy/ToolRet-Tools", "customized")
|
39 |
+
ds3 = load_dataset("mangopy/ToolRet-Tools", "web")
|
40 |
+
ds = concatenate_datasets([ds1['tools'], ds2['tools'], ds3['tools']])
|
41 |
+
ds = ds.rename_columns({'id':'tool'})
|
42 |
+
|
43 |
+
#merge
|
44 |
+
|
45 |
+
# 随便建立一个pd.DataFrame, 有两列,一列是id,一列是text
|
46 |
+
import pandas as pd
|
47 |
+
df2 = ds.to_pandas()
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
@st.cache_resource
|
52 |
def get_model(model_path: str = config['model_path']):
|
53 |
return SentenceModel(model_path)
|
|
|
58 |
retriever.load_jsonl(dataset_path, embedding_field=embedding_field, id_field=id_field)
|
59 |
return retriever
|
60 |
|
61 |
+
# 在侧边栏中添加模型配置标题
|
62 |
+
st.sidebar.markdown("<div style='text-align: center;'><h3>📄 Model Configuration</h3></div>", unsafe_allow_html=True)
|
63 |
+
|
64 |
+
|
65 |
+
# 添加模型选项下拉框,目前只有一个模型可选
|
66 |
+
model_options = ["BAAI/bge-base-en-v1.5"]
|
67 |
+
selected_model = st.sidebar.selectbox("Select Model", model_options)
|
68 |
+
st.sidebar.write("Selected model:", selected_model)
|
69 |
+
st.sidebar.write("Embedding length: 768")
|
70 |
+
|
71 |
+
# 使用选中的模型加载
|
72 |
+
model = get_model(selected_model)
|
73 |
+
|
74 |
|
75 |
model = get_model(config['model_path'])
|
76 |
retriever = create_retriever(config['vector_size'], config['dataset_path'], config['embedding_field'], config['id_field'], _model=model)
|
|
|
100 |
</style>
|
101 |
""", unsafe_allow_html=True)
|
102 |
|
103 |
+
st.markdown("<h1 style='text-align: center;'>🔍 Tool Retrieval</h1>", unsafe_allow_html=True)
|
104 |
+
|
105 |
|
106 |
col1, col2 = st.columns([4, 1])
|
107 |
with col1:
|
|
|
109 |
with col2:
|
110 |
search_clicked = st.button("🔎 Search", use_container_width=True)
|
111 |
|
112 |
+
top_k = st.slider("Top-K tools", 1, 100, 50, help="Choose the number of results to display")
|
113 |
|
114 |
+
styled_results = None
|
115 |
if search_clicked and query:
|
116 |
rec_ids, scores = retriever.search_return_id(query, top_k)
|
117 |
+
df1 = pd.DataFrame({ "relevance": scores, "tool": rec_ids})
|
118 |
+
# print(df1)
|
119 |
+
# merge两个DataFrame
|
120 |
+
results_df = pd.merge(df1, df2, on='tool', how = 'left')
|
121 |
+
|
122 |
+
# results_df["interface"] = "asdasdadasdasdasdasdasdasdasasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdassdasdasdasdasdasabababbabasdbabsdbasbdadabdbasdbasbdbasdbasdbasdb"
|
123 |
+
st.subheader("🗂️ Retrieval results")
|
124 |
|
125 |
styled_results = results_df.style.apply(
|
126 |
lambda x: [
|
|
|
129 |
],
|
130 |
axis=0,
|
131 |
).format({"relevance": "{:.4f}"})
|
132 |
+
|
133 |
st.dataframe(
|
134 |
styled_results,
|
135 |
column_config={
|
|
|
136 |
"relevance": st.column_config.ProgressColumn(
|
137 |
"relevance",
|
138 |
help="记录与查询的匹配程度",
|
139 |
format="%.4f",
|
140 |
min_value=0,
|
141 |
max_value=float(max(scores)) if len(scores) > 0 else 1,
|
142 |
+
),
|
143 |
+
"tool": st.column_config.TextColumn("tool", help="tool help text", width="medium")
|
144 |
},
|
145 |
hide_index=True,
|
146 |
use_container_width=True,
|