|
from typing import Tuple, Dict, List, Optional
|
|
import streamlit as st
|
|
import supervision as sv
|
|
import numpy as np
|
|
import cv2
|
|
from huggingface_hub import hf_hub_download
|
|
from ultralytics import YOLO
|
|
from PIL import Image
|
|
import torch
|
|
|
|
torch.cuda.is_available = lambda: False
|
|
|
|
|
|
st.set_page_config(
|
|
page_title="Medieval Manuscript Segmentation",
|
|
page_icon="π",
|
|
layout="wide"
|
|
)
|
|
|
|
|
|
MODEL_OPTIONS = {
|
|
"YOLOv11-Nano": "medieval-yolo11n-seg.pt",
|
|
"YOLOv11-Small": "medieval-yolo11s-seg.pt",
|
|
"YOLOv11-Medium": "medieval-yolo11m-seg.pt",
|
|
"YOLOv11-Large": "medieval-yolo11l-seg.pt",
|
|
"YOLOv11-XLarge": "medieval-yolo11x-seg.pt",
|
|
"YOLOv11-Medium Zones": "medieval_zones-yolo11m-seg.pt",
|
|
"YOLOv11-Medium Lines": "medieval_lines-yolo11m-seg.pt",
|
|
"ms_yolo11m-seg4-YTG": "ms_yolo11m-seg4-YTG.pt",
|
|
"ms_yolo11m-seg5-swin_t": "ms_yolo11m-seg5-swin_t.pt",
|
|
"ms_yolo11x-seg2-swin_t": "ms_yolo11x-seg2-swin_t.pt",
|
|
"ms_yolo11m-seg6-convnext_tiny": "ms_yolo11m-seg6-convnext_tiny.pt",
|
|
"yolo11m-seg-gpt": "yolo11m-seg-gpt.pt",
|
|
"ms_yolo11x-seg3-swin_t-fpn": "ms_yolo11x-seg3-swin_t-fpn.pt",
|
|
"yolo11x-seg-gpt7": "yolo11x-seg-gpt7.pt"
|
|
}
|
|
|
|
@st.cache_resource
|
|
def load_models():
|
|
"""Load all models and cache them."""
|
|
models: Dict[str, YOLO] = {}
|
|
for name, model_file in MODEL_OPTIONS.items():
|
|
try:
|
|
model_path = hf_hub_download(
|
|
repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
|
|
filename=model_file
|
|
)
|
|
models[name] = YOLO(model_path)
|
|
except Exception as e:
|
|
st.warning(f"Error loading model {name}: {str(e)}")
|
|
return models
|
|
|
|
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
|
|
"""Simplify polygon contours using Douglas-Peucker algorithm.
|
|
|
|
Args:
|
|
polygons: List of polygon contours
|
|
approx_level: Approximation level (0-1), lower values mean more simplification
|
|
|
|
Returns:
|
|
List of simplified polygons (or None for invalid polygons)
|
|
"""
|
|
result = []
|
|
for polygon in polygons:
|
|
if len(polygon) < 4:
|
|
result.append(None)
|
|
continue
|
|
|
|
perimeter = cv2.arcLength(polygon, True)
|
|
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
|
|
if len(approx) < 4:
|
|
result.append(None)
|
|
continue
|
|
|
|
result.append(approx.squeeze())
|
|
return result
|
|
|
|
|
|
class OutlineMaskAnnotator:
|
|
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
|
|
self.color = color
|
|
self.thickness = thickness
|
|
self.simplify = simplify
|
|
|
|
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
|
if detections.mask is None:
|
|
return scene
|
|
|
|
scene = scene.copy()
|
|
for mask in detections.mask:
|
|
contours, _ = cv2.findContours(
|
|
mask.astype(np.uint8),
|
|
cv2.RETR_EXTERNAL,
|
|
cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
if self.simplify:
|
|
contours = simplify_polygons(contours)
|
|
contours = [c for c in contours if c is not None]
|
|
|
|
cv2.drawContours(
|
|
scene,
|
|
contours,
|
|
-1,
|
|
self.color,
|
|
self.thickness
|
|
)
|
|
return scene
|
|
|
|
|
|
LABEL_ANNOTATOR = sv.LabelAnnotator(
|
|
text_color=sv.Color.BLACK,
|
|
text_scale=0.35,
|
|
text_thickness=1,
|
|
text_padding=2
|
|
)
|
|
|
|
def detect_and_annotate(
|
|
image: np.ndarray,
|
|
model_name: str,
|
|
conf_threshold: float,
|
|
iou_threshold: float,
|
|
simplify_polygons_option: bool
|
|
) -> np.ndarray:
|
|
|
|
model = models[model_name]
|
|
|
|
|
|
results = model.predict(
|
|
image,
|
|
conf=conf_threshold,
|
|
iou=iou_threshold
|
|
)[0]
|
|
|
|
|
|
boxes = results.boxes.xyxy.cpu().numpy()
|
|
confidence = results.boxes.conf.cpu().numpy()
|
|
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
|
|
|
|
|
masks = None
|
|
if results.masks is not None:
|
|
masks = results.masks.data.cpu().numpy()
|
|
|
|
masks = np.transpose(masks, (1, 2, 0))
|
|
h, w = image.shape[:2]
|
|
resized_masks = []
|
|
for i in range(masks.shape[-1]):
|
|
resized_mask = cv2.resize(masks[..., i], (w, h), interpolation=cv2.INTER_LINEAR)
|
|
resized_masks.append(resized_mask > 0.5)
|
|
masks = np.stack(resized_masks) if resized_masks else None
|
|
|
|
|
|
detections = sv.Detections(
|
|
xyxy=boxes,
|
|
confidence=confidence,
|
|
class_id=class_ids,
|
|
mask=masks
|
|
)
|
|
|
|
|
|
labels = [
|
|
f"{results.names[class_id]} ({conf:.2f})"
|
|
for class_id, conf
|
|
in zip(class_ids, confidence)
|
|
]
|
|
|
|
|
|
mask_annotator = OutlineMaskAnnotator(
|
|
color=(255, 0, 0),
|
|
thickness=2,
|
|
simplify=simplify_polygons_option
|
|
)
|
|
|
|
|
|
annotated_image = image.copy()
|
|
if masks is not None:
|
|
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
|
|
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
|
|
|
|
return annotated_image
|
|
|
|
|
|
models = load_models()
|
|
|
|
|
|
st.title("Medieval Manuscript Segmentation with YOLO")
|
|
|
|
|
|
with st.sidebar:
|
|
st.header("Detection Settings")
|
|
|
|
model_name = st.selectbox(
|
|
"Model",
|
|
options=list(MODEL_OPTIONS.keys()),
|
|
index=0,
|
|
help="Select YOLO model variant"
|
|
)
|
|
|
|
conf_threshold = st.slider(
|
|
"Confidence Threshold",
|
|
min_value=0.0,
|
|
max_value=1.0,
|
|
value=0.25,
|
|
step=0.05,
|
|
help="Minimum confidence score for detections"
|
|
)
|
|
|
|
iou_threshold = st.slider(
|
|
"IoU Threshold",
|
|
min_value=0.0,
|
|
max_value=1.0,
|
|
value=0.45,
|
|
step=0.05,
|
|
help="Decrease for stricter detection, increase for more overlapping masks"
|
|
)
|
|
|
|
simplify_polygons_option = st.checkbox(
|
|
"Simplify Polygons",
|
|
value=False,
|
|
help="Simplify polygon contours for cleaner outlines"
|
|
)
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
with col1:
|
|
st.subheader("Input Image")
|
|
uploaded_file = st.file_uploader(
|
|
"Upload an image",
|
|
type=["jpg", "jpeg", "png"],
|
|
key="file_uploader"
|
|
)
|
|
|
|
if uploaded_file is not None:
|
|
image = np.array(Image.open(uploaded_file))
|
|
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
else:
|
|
image = None
|
|
st.info("Please upload an image file")
|
|
|
|
with col2:
|
|
st.subheader("Detection Result")
|
|
|
|
if st.button("Detect", type="primary") and image is not None:
|
|
with st.spinner("Processing image..."):
|
|
annotated_image = detect_and_annotate(
|
|
image,
|
|
model_name,
|
|
conf_threshold,
|
|
iou_threshold,
|
|
simplify_polygons_option
|
|
)
|
|
st.image(annotated_image, caption="Detection Result", use_column_width=True)
|
|
elif image is None:
|
|
st.warning("Please upload an image first")
|
|
else:
|
|
st.info("Click the Detect button to process the image") |