johnlockejrr's picture
Upload 3 files
574eb16 verified
raw
history blame
8.1 kB
from typing import Tuple, Dict, List, Optional
import streamlit as st
import supervision as sv
import numpy as np
import cv2
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
from PIL import Image
import torch
torch.cuda.is_available = lambda: False # Force CPU-only mode in HF Space
# Page config
st.set_page_config(
page_title="Medieval Manuscript Segmentation",
page_icon="πŸ“œ",
layout="wide"
)
# Define models
MODEL_OPTIONS = {
"YOLOv11-Nano": "medieval-yolo11n-seg.pt",
"YOLOv11-Small": "medieval-yolo11s-seg.pt",
"YOLOv11-Medium": "medieval-yolo11m-seg.pt",
"YOLOv11-Large": "medieval-yolo11l-seg.pt",
"YOLOv11-XLarge": "medieval-yolo11x-seg.pt",
"YOLOv11-Medium Zones": "medieval_zones-yolo11m-seg.pt",
"YOLOv11-Medium Lines": "medieval_lines-yolo11m-seg.pt",
"ms_yolo11m-seg4-YTG": "ms_yolo11m-seg4-YTG.pt",
"ms_yolo11m-seg5-swin_t": "ms_yolo11m-seg5-swin_t.pt",
"ms_yolo11x-seg2-swin_t": "ms_yolo11x-seg2-swin_t.pt",
"ms_yolo11m-seg6-convnext_tiny": "ms_yolo11m-seg6-convnext_tiny.pt",
"yolo11m-seg-gpt": "yolo11m-seg-gpt.pt",
"ms_yolo11x-seg3-swin_t-fpn": "ms_yolo11x-seg3-swin_t-fpn.pt",
"yolo11x-seg-gpt7": "yolo11x-seg-gpt7.pt"
}
@st.cache_resource
def load_models():
"""Load all models and cache them."""
models: Dict[str, YOLO] = {}
for name, model_file in MODEL_OPTIONS.items():
try:
model_path = hf_hub_download(
repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
filename=model_file
)
models[name] = YOLO(model_path)
except Exception as e:
st.warning(f"Error loading model {name}: {str(e)}")
return models
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
"""Simplify polygon contours using Douglas-Peucker algorithm.
Args:
polygons: List of polygon contours
approx_level: Approximation level (0-1), lower values mean more simplification
Returns:
List of simplified polygons (or None for invalid polygons)
"""
result = []
for polygon in polygons:
if len(polygon) < 4:
result.append(None)
continue
perimeter = cv2.arcLength(polygon, True)
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
if len(approx) < 4:
result.append(None)
continue
result.append(approx.squeeze())
return result
# Custom MaskAnnotator for outline-only masks with simplified polygons
class OutlineMaskAnnotator:
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
self.color = color
self.thickness = thickness
self.simplify = simplify
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
if detections.mask is None:
return scene
scene = scene.copy()
for mask in detections.mask:
contours, _ = cv2.findContours(
mask.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
if self.simplify:
contours = simplify_polygons(contours)
contours = [c for c in contours if c is not None]
cv2.drawContours(
scene,
contours,
-1,
self.color,
self.thickness
)
return scene
# Create annotators with new settings
LABEL_ANNOTATOR = sv.LabelAnnotator(
text_color=sv.Color.BLACK,
text_scale=0.35,
text_thickness=1,
text_padding=2
)
def detect_and_annotate(
image: np.ndarray,
model_name: str,
conf_threshold: float,
iou_threshold: float,
simplify_polygons_option: bool
) -> np.ndarray:
# Get the selected model
model = models[model_name]
# Perform inference
results = model.predict(
image,
conf=conf_threshold,
iou=iou_threshold
)[0]
# Convert results to supervision Detections
boxes = results.boxes.xyxy.cpu().numpy()
confidence = results.boxes.conf.cpu().numpy()
class_ids = results.boxes.cls.cpu().numpy().astype(int)
# Handle masks if they exist
masks = None
if results.masks is not None:
masks = results.masks.data.cpu().numpy()
# Convert from (N,H,W) to (H,W,N) for processing
masks = np.transpose(masks, (1, 2, 0))
h, w = image.shape[:2]
resized_masks = []
for i in range(masks.shape[-1]):
resized_mask = cv2.resize(masks[..., i], (w, h), interpolation=cv2.INTER_LINEAR)
resized_masks.append(resized_mask > 0.5)
masks = np.stack(resized_masks) if resized_masks else None
# Create Detections object
detections = sv.Detections(
xyxy=boxes,
confidence=confidence,
class_id=class_ids,
mask=masks
)
# Create labels with confidence scores
labels = [
f"{results.names[class_id]} ({conf:.2f})"
for class_id, conf
in zip(class_ids, confidence)
]
# Create mask annotator based on the simplify option
mask_annotator = OutlineMaskAnnotator(
color=(255, 0, 0),
thickness=2,
simplify=simplify_polygons_option
)
# Annotate image
annotated_image = image.copy()
if masks is not None:
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
return annotated_image
# Load models
models = load_models()
# App title
st.title("Medieval Manuscript Segmentation with YOLO")
# Sidebar for controls
with st.sidebar:
st.header("Detection Settings")
model_name = st.selectbox(
"Model",
options=list(MODEL_OPTIONS.keys()),
index=0,
help="Select YOLO model variant"
)
conf_threshold = st.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.25,
step=0.05,
help="Minimum confidence score for detections"
)
iou_threshold = st.slider(
"IoU Threshold",
min_value=0.0,
max_value=1.0,
value=0.45,
step=0.05,
help="Decrease for stricter detection, increase for more overlapping masks"
)
simplify_polygons_option = st.checkbox(
"Simplify Polygons",
value=False,
help="Simplify polygon contours for cleaner outlines"
)
# Main content area
col1, col2 = st.columns(2)
with col1:
st.subheader("Input Image")
uploaded_file = st.file_uploader(
"Upload an image",
type=["jpg", "jpeg", "png"],
key="file_uploader"
)
if uploaded_file is not None:
image = np.array(Image.open(uploaded_file))
st.image(image, caption="Uploaded Image", use_column_width=True)
else:
image = None
st.info("Please upload an image file")
with col2:
st.subheader("Detection Result")
if st.button("Detect", type="primary") and image is not None:
with st.spinner("Processing image..."):
annotated_image = detect_and_annotate(
image,
model_name,
conf_threshold,
iou_threshold,
simplify_polygons_option
)
st.image(annotated_image, caption="Detection Result", use_column_width=True)
elif image is None:
st.warning("Please upload an image first")
else:
st.info("Click the Detect button to process the image")