|
import streamlit as st |
|
import numpy as np |
|
import pandas as pd |
|
import joblib |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
from xgboost import XGBClassifier |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.decomposition import PCA |
|
from sklearn.metrics import precision_recall_curve, roc_curve, confusion_matrix, classification_report |
|
import matplotlib.pyplot as plt |
|
import shap |
|
import plotly.express as px |
|
import streamlit as st |
|
import pandas as pd |
|
import datetime |
|
import json |
|
import requests |
|
from streamlit_lottie import st_lottie |
|
import streamlit.components.v1 as components |
|
from streamlit_navigation_bar import st_navbar |
|
from transformers import AutoTokenizer, AutoModel |
|
import re |
|
from tqdm import tqdm |
|
import torch |
|
import os |
|
from hugchat.login import Login |
|
from hugchat import hugchat |
|
from transformers import pipeline |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
import torch.nn as nn |
|
import time |
|
|
|
|
|
|
|
|
|
st.sidebar.title("๐ Menu") |
|
page = st.sidebar.radio( |
|
"Selecione uma opรงรฃo:", |
|
["๐ Home", "๐ Tabular Data", "๐ Clinical Text Notes", "๐ Ensemble Prediction"] |
|
) |
|
if page=="๐ Home": |
|
|
|
st.markdown(""" |
|
<style> |
|
.title { |
|
text-align: center; |
|
font-size: 36px; |
|
font-weight: bold; |
|
color: #2C3E50; |
|
} |
|
.subtitle { |
|
text-align: center; |
|
font-size: 22px; |
|
color: #7F8C8D; |
|
} |
|
.box { |
|
background-color: #ECF0F1; |
|
padding: 15px; |
|
border-radius: 10px; |
|
text-align: center; |
|
margin-bottom: 10px; |
|
font-size: 18px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("<h1 class='title'>๐ AI Clinical Readmission Predictor</h1>", unsafe_allow_html=True) |
|
st.markdown("<h2 class='subtitle'>Using Machine Learning for Better Patient Outcomes</h2>", unsafe_allow_html=True) |
|
image_1 ='https://content.presspage.com/uploads/2110/4970f578-5f20-4675-acc2-3b2cda25fa96/1920_ai-machine-learning-cedars-sinai.jpg?10000' |
|
image_2 = 'https://med-tech.world/app/uploads/2024/10/AI-Hospitals.jpg.webp' |
|
|
|
|
|
st.image(image_2, width=1450) |
|
|
|
st.write("This app helps predict patient readmission risk using machine learning models. " |
|
"Upload data, analyze clinical notes, and see predictions from our ensemble model.") |
|
|
|
|
|
st.markdown("---") |
|
st.markdown("<h3 style='text-align: center;'>๐ Explore the App</h3>", unsafe_allow_html=True) |
|
|
|
elif page== "๐ Tabular Data": |
|
|
|
|
|
def load_lottie(url): |
|
response = requests.get(url) |
|
if response.status_code != 200: |
|
return None |
|
return response.json() |
|
|
|
|
|
lottie_hello = load_lottie("https://assets7.lottiefiles.com/packages/lf20_jcikwtux.json") |
|
if lottie_hello: |
|
st_lottie(lottie_hello, speed=1, loop=True, height=200) |
|
|
|
|
|
df = pd.read_csv('/home/user/app/ensemble_test.csv') |
|
|
|
|
|
st.title('๐ฅ Hospital Readmission Prediction') |
|
st.markdown(""" |
|
<h3 style='text-align: center; color: gray;'>Predict ICU hospital readmission using Artificial Intelligence</h3> |
|
""", unsafe_allow_html=True) |
|
st.markdown("---") |
|
|
|
|
|
def get_age_group(age): |
|
"""Classify age into predefined groups with correct column names.""" |
|
if 36 <= age <= 50: |
|
return "age_group_36-50 (Middle-Aged Adults)" |
|
elif 51 <= age <= 65: |
|
return "age_group_51-65 (Older Middle-Aged Adults)" |
|
elif 66 <= age <= 80: |
|
return "age_group_66-80 (Senior Adults)" |
|
elif age >= 81: |
|
return "age_group_81+ (Elderly)" |
|
return "age_group_Below_36" |
|
|
|
|
|
def get_period(hour): |
|
"""Determine admission/discharge period.""" |
|
return "Morning" if 6 <= hour < 18 else "Night" |
|
|
|
|
|
st.subheader("๐ Select the admission's Characteristics") |
|
|
|
admission_type = st.selectbox("๐ Type of Admission", df.columns[df.columns.str.startswith('admission_type_')]) |
|
admission_location = st.selectbox("๐ Admission Location", df.columns[df.columns.str.startswith('admission_location_')]) |
|
discharge_location = st.selectbox("๐ฅ Discharge Location", df.columns[df.columns.str.startswith('discharge_location_')]) |
|
insurance = st.selectbox("๐ฐ Insurance Type", df.columns[df.columns.str.startswith('insurance_')]) |
|
|
|
st.sidebar.subheader("๐ Patient Information") |
|
language = st.sidebar.selectbox("๐ฃ Language", df.columns[df.columns.str.startswith('language_')]) |
|
marital_status = st.sidebar.selectbox("๐ Marital Status", df.columns[df.columns.str.startswith('marital_status_')]) |
|
race = st.sidebar.selectbox("๐ง Race", df.columns[df.columns.str.startswith('race_')]) |
|
sex = st.sidebar.selectbox("โง Sex", ['gender_M', 'gender_F']) |
|
age = st.sidebar.slider("๐
Age", 18, 100, 50) |
|
|
|
admission_time = st.time_input("โณ Admission Time", value=datetime.time(12, 0)) |
|
discharge_time = st.time_input("โณ Discharge Time", value=datetime.time(12, 0)) |
|
|
|
|
|
st.subheader("๐ Clinical Values") |
|
numerical_features = ['los_days', 'previous_stays', 'n_meds', 'drg_severity', 'drg_mortality', 'time_since_last_stay', |
|
'blood_cells', 'hemoglobin', 'glucose', 'creatine', 'plaquete'] |
|
numeric_inputs = {} |
|
cols = st.columns(len(numerical_features)) |
|
|
|
|
|
st.subheader("๐ General Hosptal Information") |
|
general_numerical_features = ['los_days', 'previous_stays', 'n_meds', 'drg_severity', |
|
'drg_mortality', 'time_since_last_stay'] |
|
|
|
general_inputs = {} |
|
cols = st.columns(3) |
|
|
|
for i, feature in enumerate(general_numerical_features): |
|
col_index = i % 3 |
|
min_val, max_val = df[feature].min(), df[feature].max() |
|
|
|
with cols[col_index]: |
|
general_inputs[feature] = st.slider( |
|
f"๐ {feature.replace('_', ' ').title()}", |
|
float(min_val), |
|
float(max_val), |
|
float((min_val + max_val) / 2) |
|
) |
|
|
|
|
|
st.subheader("๐งช Laboratory Test Results") |
|
lab_numerical_features = ['blood_cells', 'hemoglobin', 'glucose', |
|
'creatine', 'plaquete'] |
|
|
|
lab_inputs = {} |
|
lab_cols = st.columns(3) |
|
|
|
for i, feature in enumerate(lab_numerical_features): |
|
col_index = i % 3 |
|
min_val, max_val = df[feature].min(), df[feature].max() |
|
|
|
with lab_cols[col_index]: |
|
lab_inputs[feature] = st.slider( |
|
f"๐ฉธ {feature.replace('_', ' ').title()}", |
|
float(min_val), |
|
float(max_val), |
|
float((min_val + max_val) / 2) |
|
) |
|
min_val, max_val = df["cci_score"].min(), df["cci_score"].max() |
|
lab_inputs["cci_score"] = st.sidebar.slider( |
|
f"๐ CCI Score", |
|
float(min_val), |
|
float(max_val), |
|
float((min_val + max_val) / 2) |
|
) |
|
|
|
|
|
feature_vector = {col: 0 for col in df.columns} |
|
feature_vector.update({ |
|
admission_type: 1, |
|
admission_location: 1, |
|
discharge_location: 1, |
|
insurance: 1, |
|
language: 1, |
|
marital_status: 1, |
|
race: 1, |
|
"gender_M": 1 if sex == "gender_M" else 0, |
|
f"admit_period_{get_period(admission_time.hour)}": 1, |
|
f"discharge_period_{get_period(discharge_time.hour)}": 1 |
|
}) |
|
age_group = get_age_group(age) |
|
|
|
|
|
for group in [ |
|
"age_group_36-50 (Middle-Aged Adults)", |
|
"age_group_51-65 (Older Middle-Aged Adults)", |
|
"age_group_66-80 (Senior Adults)", |
|
"age_group_81+ (Elderly)" |
|
]: |
|
feature_vector[group] = 1 if group == age_group else 0 |
|
|
|
feature_vector.update(numeric_inputs) |
|
|
|
st.markdown("---") |
|
|
|
|
|
tabular_model_path = "/home/user/app/final_xgboost_model.pkl" |
|
tabular_model = joblib.load(tabular_model_path) |
|
print("โ
XGBoost Tabular Model loaded successfully!") |
|
|
|
|
|
expected_columns = [ |
|
col for col in df.columns if col not in ["Unnamed: 0", "subject_id", "hadm_id", "probs"] |
|
] |
|
|
|
|
|
age_group_mapping = { |
|
"age_group_36-50": "age_group_36-50 (Middle-Aged Adults)", |
|
"age_group_51-65": "age_group_51-65 (Older Middle-Aged Adults)", |
|
"age_group_66-80": "age_group_66-80 (Senior Adults)", |
|
"age_group_81+": "age_group_81+ (Elderly)", |
|
} |
|
|
|
|
|
feature_vector = {col: 0 for col in df.columns} |
|
|
|
|
|
feature_vector.update({ |
|
admission_type: 1, |
|
admission_location: 1, |
|
discharge_location: 1, |
|
insurance: 1, |
|
language: 1, |
|
marital_status: 1, |
|
race: 1, |
|
"gender_M": 1 if sex == "gender_M" else 0, |
|
f"admit_period_{get_period(admission_time.hour)}": 1, |
|
f"discharge_period_{get_period(discharge_time.hour)}": 1 |
|
}) |
|
|
|
|
|
age_group = get_age_group(age) |
|
for group in [ |
|
"age_group_36-50 (Middle-Aged Adults)", |
|
"age_group_51-65 (Older Middle-Aged Adults)", |
|
"age_group_66-80 (Senior Adults)", |
|
"age_group_81+ (Elderly)" |
|
]: |
|
feature_vector[group] = 1 if group == age_group else 0 |
|
|
|
|
|
feature_vector.update(general_inputs) |
|
feature_vector.update(lab_inputs) |
|
|
|
|
|
fixed_feature_vector = {age_group_mapping.get(k, k): v for k, v in feature_vector.items()} |
|
feature_df = pd.DataFrame([fixed_feature_vector]).reindex(columns=expected_columns, fill_value=0) |
|
|
|
st.write(feature_df) |
|
|
|
prediction_proba = tabular_model.predict_proba(feature_df)[:, 1] |
|
probability = float(prediction_proba[0]) |
|
st.session_state["XGBoost probability"] = probability |
|
prediction = (prediction_proba >= 0.5).astype(int) |
|
|
|
import shap |
|
import matplotlib.pyplot as plt |
|
import streamlit.components.v1 as components |
|
|
|
st.write(f"Raw Prediction Probability: {probability:.4f}") |
|
|
|
|
|
if st.button("๐ Predict Readmission"): |
|
with st.spinner("๐ Processing Prediction..."): |
|
st.subheader("๐ฏ Prediction Results") |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.metric(label="๐งฎ Readmission Probability", value=f"{probability:.2%}") |
|
|
|
with col2: |
|
if prediction == 1: |
|
st.error("โ ๏ธ High Risk of Readmission") |
|
else: |
|
st.success("โ
Low Risk of Readmission") |
|
|
|
|
|
if st.button("๐ Feature Importance for Prediction"): |
|
st.metric(label="๐งฎ Readmission Probability", value=f"{probability:.2%}") |
|
|
|
explainer = shap.TreeExplainer(tabular_model) |
|
shap_values = explainer.shap_values(feature_df) |
|
|
|
|
|
shap_df = pd.DataFrame({ |
|
"Feature": feature_df.columns, |
|
"SHAP Value": shap_values[0] |
|
}) |
|
|
|
|
|
shap_df["abs_SHAP"] = shap_df["SHAP Value"].abs() |
|
shap_df = shap_df.sort_values(by="abs_SHAP", ascending=False).head(10) |
|
|
|
|
|
top_features = sorted(zip(shap_df['Feature'], shap_df['SHAP Value']), key=lambda x: abs(x[1]), reverse=True) |
|
|
|
|
|
top_factors = "\n".join([f"- {feat}: {round(value, 2)} impact" for feat, value in top_features]) |
|
|
|
|
|
st.title("๐ฉบ AI-Powered Patient Readmission Analysis") |
|
|
|
with st.spinner("๐ค Analyzing..."): |
|
try: |
|
response = chatbot.chat(hugging_prompt) |
|
if not response: |
|
raise ValueError("Resposta vazia do HuggingChat") |
|
|
|
ai_output = f""" |
|
**Based on the provided feature impacts, here's an interpretation of the model's decision-making process:** |
|
|
|
### **Most influential factors:** |
|
- **previous_stays (1.4 impact)**: The model assigns a significant weight to the number of previous stays, suggesting that patients with a history of multiple hospitalizations are more likely to be readmitted. This is a common predictor of readmission, as patients with frequent hospitalizations may have chronic conditions or complex health issues that increase their risk of requiring further care. |
|
- **time_since_last_stay (-0.18 impact)**: The negative impact of time since last stay indicates that patients who have been discharged recently are more likely to be readmitted. This could be due to incomplete recovery, inadequate post-discharge care, or unresolved underlying conditions. |
|
|
|
### **Moderately influential factors:** |
|
- **n_meds (0.14 impact)**: The number of medications a patient is taking has a moderate positive impact, suggesting that patients with complex medication regimens may be at higher risk of readmission due to potential side effects, interactions, or non-adherence. |
|
- **real_age (0.12 impact)**: The patient's age has a moderate positive impact, indicating that older patients may be more likely to be readmitted due to age-related health decline, comorbidities, or decreased physiological reserve. |
|
|
|
### **Less influential factors:** |
|
- **creatine (0.05 impact)** and **cci_score (0.05 impact)**: These two factors have relatively small positive impacts, suggesting that kidney function (creatinine) and comorbidity burden (cci_score) may contribute to the readmission risk, but to a lesser extent. |
|
- **drg_severity (-0.04 impact)**: The negative impact of DRG (Diagnosis-Related Group) severity suggests that patients with less severe diagnoses may be more likely to be readmitted, potentially due to inadequate treatment or incomplete recovery. |
|
- **blood_cells (0.03 impact)**: The small positive impact of blood cell count may indicate that patients with abnormal blood cell counts (e.g., anemia) may be at slightly higher risk of readmission. |
|
- **discharge_location_CHRONIC/LONG TERM ACUTE CARE (-0.03 impact)** and **race_WHITE (-0.03 impact)**: These two factors have small negative impacts, suggesting that patients discharged to chronic or long-term acute care facilities and white patients may be less likely to be readmitted. |
|
|
|
### **Key characteristics of the patient or admission:** |
|
Based on the feature impacts, the model is likely to predict readmission for patients with: |
|
- A history of multiple hospitalizations (**previous_stays**) |
|
- Recent discharge (**time_since_last_stay**) |
|
- Complex medication regimens (**n_meds**) |
|
- Older age (**real_age**) |
|
- Potential kidney function issues (**creatine**) or comorbidities (**cci_score**) |
|
|
|
These characteristics may indicate that the patient has chronic or complex health issues, incomplete recovery, or inadequate post-discharge care, increasing their risk of readmission. |
|
""" |
|
|
|
|
|
with st.chat_message("assistant"): |
|
st.markdown(f"**๐ก AI Explanation:**\n\n{ai_output}") |
|
|
|
except Exception as e: |
|
st.error(f"โ ๏ธ Error retrieving response: {e}") |
|
st.stop() |
|
|
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(8, 6)) |
|
shap.bar_plot(shap_df["SHAP Value"].values, shap_df["Feature"].values) |
|
st.pyplot(fig) |
|
|
|
|
|
st.subheader("๐ฏ SHAP Force Plot (How Features Affected the Prediction)") |
|
|
|
|
|
force_plot = shap.force_plot( |
|
explainer.expected_value, shap_values[0], feature_df.iloc[0], matplotlib=False |
|
) |
|
|
|
|
|
shap_html = f"<head>{shap.getjs()}</head><body>{force_plot.html()}</body>" |
|
|
|
|
|
components.html(shap_html, height=400) |
|
|
|
elif page == "๐ Clinical Text Notes": |
|
|
|
st.subheader("๐ Clinical Text Note") |
|
|
|
|
|
|
|
def clean_text(text): |
|
"""Cleans input text by removing non-ASCII characters, extra spaces, and unwanted symbols.""" |
|
text = re.sub(r"[^\x20-\x7E]", " ", text) |
|
text = re.sub(r"_{2,}", "", text) |
|
text = re.sub(r"\s+", " ", text) |
|
text = re.sub(r"[^\w\s.,:;*%()\[\]-]", "", text) |
|
return text.lower().strip() |
|
|
|
|
|
import re |
|
|
|
def extract_fields(text): |
|
"""Extracts key fields from clinical notes using regex patterns.""" |
|
patterns = { |
|
"Discharge Medications": r"Discharge Medications[:\-]?\s*(.+?)\s+(?:Discharge Disposition|Discharge Condition|Discharge Instructions|Followup Instructions|$)", |
|
"Discharge Diagnosis": r"Discharge Diagnosis[:\-]?\s*(.+?)\s+(?:Discharge Condition|Discharge Medications|Discharge Instructions|Followup Instructions|$)", |
|
"Discharge Instructions": r"Discharge Instructions[:\-]?\s*(.*?)\s+(?:Followup Instructions|Discharge Disposition|Discharge Condition|$)", |
|
"History of Present Illness": r"History of Present Illness[:\-]?\s*(.+?)\s+(?:Past Medical History|Social History|Family History|Physical Exam|$)", |
|
"Past Medical History": r"Past Medical History[:\-]?\s*(.+?)\s+(?:Social History|Family History|Physical Exam|$)" |
|
} |
|
|
|
extracted_data = {} |
|
|
|
for field, pattern in patterns.items(): |
|
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) |
|
if match: |
|
extracted_data[field] = match.group(1).strip() |
|
|
|
return extracted_data |
|
|
|
def extract_features(texts, model, tokenizer, device, batch_size=8): |
|
"""Extracts CLS token embeddings from the Clinical-Longformer model.""" |
|
all_features = [] |
|
for i in range(0, len(texts), batch_size): |
|
batch_texts = texts[i:i+batch_size] |
|
inputs = tokenizer(batch_texts, return_tensors="pt", truncation=True, padding=True, max_length=4096).to(device) |
|
global_attention_mask = torch.zeros_like(inputs["input_ids"]).to(device) |
|
global_attention_mask[:, 0] = 1 |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs, global_attention_mask=global_attention_mask) |
|
|
|
all_features.append(outputs.last_hidden_state[:, 0, :]) |
|
|
|
return torch.cat(all_features, dim=0) |
|
|
|
|
|
def extract_entities(text, pipe, entity_group): |
|
"""Extracts specific entities from the clinical note using a NER pipeline.""" |
|
entities = pipe(text) |
|
return [ent['word'] for ent in entities if ent['entity_group'] == entity_group] or ["No relevant entities found"] |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
@st.cache_resource() |
|
def load_models(): |
|
"""Loads transformer models for text processing and NER.""" |
|
longformer_tokenizer = AutoTokenizer.from_pretrained("yikuan8/Clinical-Longformer") |
|
longformer_model = AutoModel.from_pretrained("yikuan8/Clinical-Longformer").to(device).eval() |
|
|
|
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all") |
|
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all") |
|
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") |
|
|
|
return longformer_tokenizer, longformer_model, ner_pipe |
|
|
|
longformer_tokenizer, longformer_model, ner_pipe = load_models() |
|
|
|
|
|
clinical_note = st.text_area("โ๏ธ Enter Clinical Note", placeholder="Write the clinical note here...") |
|
|
|
if clinical_note: |
|
cleaned_note = clean_text(clinical_note) |
|
|
|
|
|
|
|
|
|
extracted_data = extract_fields(cleaned_note) |
|
st.write("### Extracted Fields") |
|
st.write(extracted_data) |
|
|
|
|
|
with st.spinner("๐ Extracting embeddings..."): |
|
embeddings = extract_features([cleaned_note], longformer_model, longformer_tokenizer, device) |
|
|
|
|
|
|
|
class RobustMLPClassifier(nn.Module): |
|
def __init__(self, input_dim, hidden_dims=[256, 128, 64], dropout=0.3, activation=nn.ReLU()): |
|
super(RobustMLPClassifier, self).__init__() |
|
layers = [] |
|
current_dim = input_dim |
|
|
|
for h in hidden_dims: |
|
layers.append(nn.Linear(current_dim, h)) |
|
layers.append(nn.BatchNorm1d(h)) |
|
layers.append(activation) |
|
layers.append(nn.Dropout(dropout)) |
|
current_dim = h |
|
|
|
layers.append(nn.Linear(current_dim, 1)) |
|
self.net = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
mlp_model_path = "/home/user/app/best_mlp_model_full.pth" |
|
pca_path = "/home/user/app/best_pca_model.pkl" |
|
|
|
best_mlp_model = torch.load(mlp_model_path) |
|
best_mlp_model.to(device) |
|
best_mlp_model.eval() |
|
|
|
pca = joblib.load(pca_path) |
|
|
|
def predict_readmission(texts): |
|
"""Predicts hospital readmission probability using Clinical-Longformer embeddings and MLP.""" |
|
embeddings = extract_features(texts, longformer_model, longformer_tokenizer, device) |
|
embeddings_pca = pca.transform(embeddings.cpu().numpy()) |
|
|
|
inputs = torch.FloatTensor(embeddings_pca).to(device) |
|
|
|
with torch.no_grad(): |
|
logits = best_mlp_model(inputs) |
|
probabilities = torch.sigmoid(logits).cpu().numpy() |
|
|
|
return probabilities |
|
|
|
|
|
with st.spinner("๐ Identifying medical entities..."): |
|
extracted_data["Extracted Medications"] = extract_entities( |
|
extracted_data.get("Discharge Medications", ""), ner_pipe, "Medication" |
|
) |
|
|
|
extracted_data["Extracted Diseases"] = extract_entities( |
|
extracted_data.get("Discharge Diagnosis", ""), ner_pipe, "Disease_disorder" |
|
) |
|
|
|
extracted_data["Extracted Diseases (Past Medical History)"] = extract_entities( |
|
extracted_data.get("Past Medical History", ""), ner_pipe, "Disease_disorder" |
|
) |
|
|
|
extracted_data["Extracted Diseases (History of Present Illness)"] = extract_entities( |
|
extracted_data.get("History of Present Illness", ""), ner_pipe, "Disease_disorder" |
|
) |
|
|
|
|
|
extracted_data["Extracted Symptoms"] = extract_entities( |
|
extracted_data.get("Review of Systems", "") + " " + extracted_data.get("History of Present Illness", ""), |
|
ner_pipe, "Sign_symptom" |
|
) |
|
|
|
|
|
def clean_entities(entities): |
|
"""Reconstruct fragmented tokens and remove duplicates.""" |
|
cleaned = [] |
|
temp = "" |
|
|
|
for entity in entities: |
|
if entity.startswith("##"): |
|
temp += entity.replace("##", "") |
|
else: |
|
if temp: |
|
cleaned.append(temp) |
|
temp = entity |
|
if temp: |
|
cleaned.append(temp) |
|
|
|
|
|
cleaned = [word for word in cleaned if len(word) > 2 and not re.match(r"^[\W_]+$", word)] |
|
|
|
return sorted(set(cleaned)) |
|
|
|
|
|
diseases_cleaned = clean_entities( |
|
extracted_data.get("Extracted Diseases", []) + |
|
extracted_data.get("Extracted Diseases (Past Medical History)", []) + |
|
extracted_data.get("Extracted Diseases (History of Present Illness)", []) |
|
) |
|
|
|
medications_cleaned = clean_entities(extracted_data.get("Extracted Medications", [])) |
|
|
|
|
|
extracted_data["Extracted Medications Cleaned"] = medications_cleaned |
|
|
|
symptoms_cleaned = clean_entities(extracted_data.get("Extracted Symptoms", [])) |
|
|
|
|
|
def display_list(title, items, icon="๐"): |
|
"""Display extracted medical entities in an expandable list.""" |
|
with st.expander(f"**{title} ({len(items)})**"): |
|
if items: |
|
for item in items: |
|
st.markdown(f"- {icon} **{item}**") |
|
else: |
|
st.markdown("_No information available._") |
|
|
|
|
|
|
|
st.markdown("## ๐ฅ **Patient Medical Analysis**") |
|
st.markdown("---") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
|
|
num_medications = len(medications_cleaned ) |
|
col1.metric(label="๐ Total Medications", value=num_medications) |
|
|
|
|
|
num_diseases = len(diseases_cleaned) |
|
col2.metric(label="๐ฆ Total Diseases", value=num_diseases) |
|
|
|
|
|
num_symptoms = len(symptoms_cleaned) |
|
col3.metric(label="๐ค Total Symptoms", value=num_symptoms) |
|
|
|
st.markdown("---") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
st.markdown("### ๐ **Medications**") |
|
display_list("Medication List", medications_cleaned , icon="๐") |
|
|
|
|
|
with col2: |
|
st.markdown("### ๐ฆ **Diseases**") |
|
display_list("Disease List", diseases_cleaned, icon="๐ฆ ") |
|
|
|
|
|
st.markdown("### ๐ค **Symptoms**") |
|
display_list("Symptoms List", symptoms_cleaned, icon="๐ค") |
|
|
|
st.markdown("---") |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yikuan8/Clinical-Longformer") |
|
|
|
|
|
def count_tokens(text): |
|
tokens = tokenizer.tokenize(text) |
|
return len(tokens) |
|
|
|
def trunced_text(nr): |
|
return 1 if nr > 4096 else 0 |
|
|
|
|
|
disease_synonyms = { |
|
"Pneumonia": ["pneumonia", "pneumonitis"], |
|
"Diabetes": ["diabetes", "diabetes mellitus", "dm"], |
|
"CHF": ["CHF", "congestive heart failure", "heart failure"], |
|
"Septicemia": ["septicemia", "sepsis", "blood infection"], |
|
"Cirrhosis": ["cirrhosis", "liver cirrhosis", "hepatic cirrhosis"], |
|
"COPD": ["COPD", "chronic obstructive pulmonary disease"], |
|
"Renal_Failure": ["renal failure", "kidney failure", "chronic kidney disease", "CKD"] |
|
} |
|
|
|
|
|
extracted_data = extract_fields(clinical_note) |
|
|
|
|
|
number_of_tokens = count_tokens(clinical_note) |
|
number_of_tokens_med = count_tokens(extracted_data.get("Discharge Medications", "")) |
|
number_of_tokens_dis = count_tokens(extracted_data.get("Discharge Diagnosis", "")) |
|
trunced = trunced_text(number_of_tokens) |
|
|
|
|
|
full_diagnosis_text = extracted_data.get("Discharge Diagnosis", "").lower() |
|
|
|
|
|
def check_disease_presence(disease_list, text): |
|
return int(any(re.search(rf"\b{synonym}\b", text, re.IGNORECASE) for synonym in disease_list)) |
|
|
|
|
|
disease_flags = {disease: check_disease_presence(synonyms, full_diagnosis_text) |
|
for disease, synonyms in disease_synonyms.items()} |
|
|
|
|
|
disease_flags["total_conditions"] = sum(disease_flags.values()) |
|
|
|
|
|
df = pd.DataFrame([{ |
|
'number_of_tokens_dis': number_of_tokens_dis, |
|
'number_of_tokens': number_of_tokens, |
|
'number_of_tokens_med': number_of_tokens_med, |
|
'diagnostic_count': num_diseases, |
|
'total_conditions': disease_flags["total_conditions"], |
|
'trunced': trunced, |
|
**{disease: disease_flags[disease] for disease in disease_synonyms.keys()} |
|
}]) |
|
|
|
|
|
|
|
|
|
|
|
light_path = '/home/user/app/best_lgbm_model.pkl' |
|
light_model = joblib.load(light_path) |
|
|
|
|
|
|
|
|
|
model_features = light_model.feature_name_ |
|
|
|
|
|
missing_features = [feat for feat in model_features if feat not in df.columns] |
|
if missing_features: |
|
st.write(f"โ ๏ธ Warning: Missing features in df: {missing_features}") |
|
|
|
|
|
for feat in missing_features: |
|
df[feat] = 0 |
|
|
|
|
|
df = df[model_features] |
|
|
|
|
|
X = df.to_numpy() |
|
|
|
|
|
|
|
light_probability = light_model.predict_proba(X)[:, 1] |
|
|
|
st.session_state["lightgbm probability"] = light_probability |
|
|
|
|
|
|
|
|
|
|
|
if st.button("๐ Predict Readmission"): |
|
with st.spinner("๐ Extracting embeddings and predicting readmission..."): |
|
readmission_prob = predict_readmission([cleaned_note])[0][0] |
|
st.session_state["MLP probability"] = readmission_prob |
|
prediction = 1 if readmission_prob > 0.5 else 0 |
|
|
|
|
|
st.subheader("๐ฏ Prediction Results") |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.metric(label="๐งฎ Readmission Probability", value=f"{readmission_prob:.2%}") |
|
|
|
with col2: |
|
if prediction == 1: |
|
st.error("โ ๏ธ High Risk of Readmission") |
|
else: |
|
st.success("โ
Low Risk of Readmission") |
|
|
|
|
|
st.markdown(f""" |
|
<div style="text-align:center; padding: 20px; background-color: #f8f9fa; border-radius: 10px;"> |
|
<h3>๐ Readmission Probability</h3> |
|
<h2 style="color: {'red' if readmission_prob > 0.5 else 'green'};">{readmission_prob:.2%}</h2> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
elif page == "๐ Ensemble Prediction": |
|
|
|
|
|
ensemble_model = joblib.load("/home/user/app/best_ensemble_model.pkl") |
|
|
|
|
|
|
|
models = ["XGBoost", "lightgbm", "MLP"] |
|
|
|
|
|
probabilities = [] |
|
for model in models: |
|
key = f"{model} probability" |
|
if key in st.session_state: |
|
try: |
|
prob = float(st.session_state[key]) |
|
probabilities.append(prob) |
|
except ValueError: |
|
st.error(f"โ ๏ธ Invalid probability value for {model}: {st.session_state[key]}") |
|
probabilities.append(None) |
|
else: |
|
probabilities.append(None) |
|
|
|
|
|
if None not in probabilities: |
|
st.write("### ๐ณ๏ธ Voting Process in Progress...") |
|
|
|
progress_bar = st.progress(0) |
|
voting_display = st.empty() |
|
|
|
votes = [] |
|
for i, (model, prob) in enumerate(zip(models, probabilities)): |
|
time.sleep(1) |
|
|
|
|
|
for _ in range(3): |
|
voting_display.markdown(f"โณ {model} is deciding...") |
|
time.sleep(0.5) |
|
voting_display.markdown("") |
|
time.sleep(0.5) |
|
|
|
|
|
if prob < 0.33: |
|
vote = "๐ข Low" |
|
elif prob < 0.46: |
|
vote = "๐ก Medium" |
|
else: |
|
vote = "๐ด High" |
|
|
|
votes.append(vote) |
|
voting_display.markdown(f"โ
**{model} voted: {vote}**") |
|
progress_bar.progress((i + 1) / len(models)) |
|
|
|
time.sleep(1) |
|
progress_bar.empty() |
|
|
|
|
|
final_df = pd.DataFrame([probabilities], columns=['probs', 'probs_lgb', 'probs_mlp']) |
|
final_df = final_df.astype(float) |
|
|
|
|
|
final_probability = ensemble_model.predict_proba(final_df)[:, 1][0] |
|
final_prediction = 1 if final_probability >= 0.25 else 0 |
|
|
|
|
|
st.markdown("---") |
|
if final_prediction == 1: |
|
st.markdown(f""" |
|
<div style="text-align: center; background-color: #ffdddd; padding: 15px; border-radius: 10px;"> |
|
<h2>๐จ <b>Final Prediction: 1</b> (Readmission Likely) </h2> |
|
<h3>๐ Probability: {final_probability:.2f} (Threshold: 0.25)</h3> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
else: |
|
st.markdown(f""" |
|
<div style="text-align: center; background-color: #ddffdd; padding: 15px; border-radius: 10px;"> |
|
<h2>โ
<b>Final Prediction: 0</b> (No Readmission Risk) </h2> |
|
<h3>๐ Probability: {final_probability:.2f} (Threshold: 0.25)</h3> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.write("### โ๏ธ Model Contribution to Final Decision") |
|
fig, ax = plt.subplots() |
|
ax.bar(models, probabilities, color=["blue", "green", "red"]) |
|
ax.set_ylabel("Probability") |
|
ax.set_title("Model Prediction Probabilities") |
|
st.pyplot(fig) |
|
|
|
|
|
st.write("### ๐ Voting Breakdown:") |
|
for model, vote in zip(models, votes): |
|
st.write(f"๐น {model}: **{vote}** (Prob: {probabilities[models.index(model)]:.2f})") |
|
|
|
else: |
|
st.warning("โ ๏ธ Some model predictions are missing. Please run all models before voting.") |