from copy import deepcopy from collections import defaultdict from dataclasses import dataclass from typing import Dict, Union, Tuple, List import numpy as np from numpy import ndarray import os from random import shuffle from box import Box from torch.onnx.symbolic_opset11 import index_copy from .spec import ConfigSpec @dataclass class DatapathConfig(ConfigSpec): ''' Config to handle input data paths. ''' # root input_dataset_dir: str # use proportion data sampling use_prob: bool # cls: [(path_1, p_1), ...] data_path: Dict[str, List[Tuple[str, float]]] # how many files to return when using data sampling num_files: Union[int, None] @classmethod def from_args(cls, **kwargs) -> 'DatapathConfig': ''' Make a temporary datapath from user inputs. ''' input = kwargs.get('input', None) output = kwargs.get('output', None) recursive = kwargs.get('recursive', False) @classmethod def parse(cls, config) -> 'DatapathConfig': cls.check_keys(config) return DatapathConfig( input_dataset_dir=config.input_dataset_dir, use_prob=config.get('use_prob', True), data_path=config.data_path, num_files=config.get('num_files', None), ) def split_by_cls(self) -> Dict[str, 'DatapathConfig']: res: Dict[str, DatapathConfig] = {} for cls in self.data_path: res[cls] = deepcopy(self) res[cls].data_path = {cls: self.data_path[cls]} return res class Datapath(): def __init__( self, config: Union[DatapathConfig, None]=None, files: Union[List[str], None]=None, cls: Union[str, None]=None, ): if config is not None: self.config = config self.file_list = [] cls_probs_first = [] cls_first = [] self.files_by_class: Dict[str, List[Dict]] = defaultdict(list) self.class_positions: Dict[str, List[int]] = defaultdict(list) self.cls_probs_second: Dict[str, ndarray] = defaultdict(List) for cls in self.config.data_path: prob = 0. probs_second = [] for (path, p) in self.config.data_path[cls]: prob += p probs_second.append(p) with open(path, 'r') as f: file_items = [] missing = 0 for l in f.readlines(): raw_data_path = os.path.join(self.config.input_dataset_dir, l.strip(), 'raw_data.npz') if not os.path.exists(raw_data_path): missing += 1 continue file_items.append({ 'cls': cls, 'path': os.path.join(self.config.input_dataset_dir, l.strip()), 'prob': p }) assert len(file_items) > 0, f"files in {path} are all missing! root: {self.config.input_dataset_dir}" if missing > 0: print(f"\033[31m{cls}: {missing} missing files\033[0m") self.files_by_class[cls].append(file_items) self.class_positions[cls].append(0) self.file_list.extend(file_items) probs_second = np.array(probs_second) self.cls_probs_second[cls] = probs_second / probs_second.sum() cls_first.append(cls) cls_probs_first.append(prob) cls_probs_first = np.array(cls_probs_first) self.cls_first: List[str] = cls_first self.cls_probs_first: Dict[str, List[float]] = cls_probs_first / cls_probs_first.sum() elif files is not None: if cls is None: cls = 'inference' self.file_list = [{'cls': cls, 'path': file} for file in files] cls_probs_first = np.array([1.]) cls_first = [] self.files_by_class: Dict[str, List[Dict]] = {cls: self.file_list.copy()} self.class_positions: Dict[str, List[int]] = {cls: [0]} self.cls_probs_second: Dict[str, ndarray] = {cls: np.array([1.])} self.config = Box({'use_prob': False}) else: assert(0) def __len__(self): if self.config.use_prob: assert self.config.num_files is not None, 'num_files is not specified' return self.config.num_files return len(self.file_list) def __getitem__(self, index) -> Tuple[str, str]: if self.config.use_prob: # first sample a class cls = np.random.choice(self.cls_first, p=self.cls_probs_first) # second sample in this class idx = np.random.choice(len(self.files_by_class[cls]), p=self.cls_probs_second[cls]) # get the current position pos = self.class_positions[cls][idx] files = self.files_by_class[cls][idx] # get the item andd update position item = files[pos] self.class_positions[cls][idx] = (pos + 1) % len(files) if (pos + 1) % len(files) == 0: shuffle(self.files_by_class[cls][idx]) else: item = self.file_list[index] return (item['cls'], item['path']) def get_data(self) -> List[Tuple[str, str]]: return [self[i] for i in range(len(self))]