Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import os | |
import sys | |
import tempfile | |
import shutil | |
import subprocess | |
# from huggingface_hub import HfApi, snapshot_download # For future model management if needed | |
# import spaces # For @spaces.GPU decorator if you add it | |
# --- Configuration --- | |
# Path to the cloned UniRig repository directory within the Space | |
UNIRIG_REPO_DIR = os.path.join(os.path.dirname(__file__), "UniRig") | |
if not os.path.isdir(UNIRIG_REPO_DIR): | |
print(f"ERROR: UniRig repository not found at {UNIRIG_REPO_DIR}. Please clone it there.") | |
# Consider raising an error or displaying it in the UI if UniRig is critical for startup | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {DEVICE}") | |
if DEVICE.type == 'cuda': | |
print(f"CUDA Device Name: {torch.cuda.get_device_name(0)}") | |
print(f"CUDA Version: {torch.version.cuda}") | |
else: | |
print("Warning: CUDA not available or not detected by PyTorch. UniRig performance will be severely impacted.") | |
def run_unirig_command(command_args, step_name): | |
"""Helper function to run UniRig commands using subprocess.""" | |
python_exe = sys.executable | |
# Ensure the command starts with the python executable and '-m' for module execution | |
cmd = [python_exe, "-m"] + command_args | |
print(f"Running {step_name}: {' '.join(cmd)}") | |
process_env = os.environ.copy() | |
# Explicitly add UNIRIG_REPO_DIR to PYTHONPATH for the subprocess. | |
# This ensures that Python can find the 'unirig' package located within UNIRIG_REPO_DIR. | |
# UNIRIG_REPO_DIR itself is the directory containing the 'unirig' package folder. | |
existing_pythonpath = process_env.get('PYTHONPATH', '') | |
process_env["PYTHONPATH"] = f"{UNIRIG_REPO_DIR}{os.pathsep}{existing_pythonpath}" | |
print(f"Set PYTHONPATH for subprocess: {process_env['PYTHONPATH']}") | |
try: | |
# Execute the command from the UniRig directory for Hydra to find configs | |
result = subprocess.run(cmd, cwd=UNIRIG_REPO_DIR, capture_output=True, text=True, check=True, env=process_env) | |
print(f"{step_name} STDOUT:\n{result.stdout}") | |
if result.stderr: | |
print(f"{step_name} STDERR (non-fatal or warnings):\n{result.stderr}") | |
except subprocess.CalledProcessError as e: | |
print(f"ERROR during {step_name}:") | |
print(f"Command: {' '.join(e.cmd)}") | |
print(f"Return code: {e.returncode}") | |
print(f"Stdout: {e.stdout}") | |
print(f"Stderr: {e.stderr}") | |
# Provide a more user-friendly error, potentially masking long tracebacks | |
error_summary = e.stderr.splitlines()[-5:] # Last 5 lines of stderr | |
raise gr.Error(f"Error in UniRig {step_name}. Details: {' '.join(error_summary)}") | |
except FileNotFoundError: | |
print(f"ERROR: Could not find executable or script for {step_name}. Is UniRig cloned correctly in {UNIRIG_REPO_DIR} and Python environment setup?") | |
raise gr.Error(f"Setup error for UniRig {step_name}. Check server logs and UniRig directory structure.") | |
except Exception as e_general: | |
print(f"An unexpected Python exception occurred in run_unirig_command for {step_name}: {e_general}") | |
raise gr.Error(f"Unexpected Python error during {step_name}: {str(e_general)[:500]}") | |
# If you are using @spaces.GPU, you would import it: | |
# import spaces | |
# @spaces.GPU # You can specify type like @spaces.GPU(type="t4") or count | |
def rig_glb_mesh_multistep(input_glb_file_obj): | |
""" | |
Takes an input GLB file object (from gr.File with type="filepath"), | |
rigs it using the new UniRig multi-step process, | |
and returns the path to the final rigged GLB file. | |
""" | |
if not os.path.isdir(UNIRIG_REPO_DIR): | |
raise gr.Error(f"UniRig repository not found at {UNIRIG_REPO_DIR}. Cannot proceed. Please check Space setup.") | |
if input_glb_file_obj is None: | |
# This case should ideally be handled by Gradio's input validation if `allow_none=False` (default) | |
raise gr.Error("No input file provided. Please upload a .glb mesh.") | |
# When type="filepath", input_glb_file_obj is the path string directly | |
input_glb_path = input_glb_file_obj | |
print(f"Input GLB path received: {input_glb_path}") | |
# Create a dedicated temporary directory for all intermediate and final files | |
processing_temp_dir = tempfile.mkdtemp(prefix="unirig_processing_") | |
print(f"Using temporary processing directory: {processing_temp_dir}") | |
try: | |
base_name = os.path.splitext(os.path.basename(input_glb_path))[0] | |
# Step 1: Skeleton Prediction | |
temp_skeleton_path = os.path.join(processing_temp_dir, f"{base_name}_skeleton.fbx") | |
print("Step 1: Predicting Skeleton...") | |
run_unirig_command([ | |
"unirig.predict_skeleton", | |
f"input.path={os.path.abspath(input_glb_path)}", # Use absolute path for robustness | |
f"output.path={os.path.abspath(temp_skeleton_path)}", | |
# f"device={str(DEVICE)}" # If UniRig's script accepts this override and handles it | |
], "Skeleton Prediction") | |
if not os.path.exists(temp_skeleton_path): | |
raise gr.Error("Skeleton prediction failed to produce an output file. Check logs for UniRig errors.") | |
# Step 2: Skinning Weight Prediction | |
temp_skin_path = os.path.join(processing_temp_dir, f"{base_name}_skin.fbx") | |
print("Step 2: Predicting Skinning Weights...") | |
run_unirig_command([ | |
"unirig.predict_skin", | |
f"input.skeleton_path={os.path.abspath(temp_skeleton_path)}", | |
f"input.source_mesh_path={os.path.abspath(input_glb_path)}", | |
f"output.path={os.path.abspath(temp_skin_path)}", | |
], "Skinning Prediction") | |
if not os.path.exists(temp_skin_path): | |
raise gr.Error("Skinning prediction failed to produce an output file. Check logs for UniRig errors.") | |
# Step 3: Merge Skeleton/Skin with Original Mesh | |
final_rigged_glb_path = os.path.join(processing_temp_dir, f"{base_name}_rigged_final.glb") | |
print("Step 3: Merging Results...") | |
run_unirig_command([ | |
"unirig.merge_skeleton_skin", | |
f"input.source_rig_path={os.path.abspath(temp_skin_path)}", | |
f"input.target_mesh_path={os.path.abspath(input_glb_path)}", | |
f"output.path={os.path.abspath(final_rigged_glb_path)}", | |
], "Merging") | |
if not os.path.exists(final_rigged_glb_path): | |
raise gr.Error("Merging process failed to produce the final rigged GLB file. Check logs for UniRig errors.") | |
# final_rigged_glb_path is in processing_temp_dir. | |
# Gradio's gr.Model3D output component will handle serving this file. | |
return final_rigged_glb_path | |
except gr.Error: # Re-raise Gradio errors directly | |
if os.path.exists(processing_temp_dir): # Clean up on known Gradio error | |
shutil.rmtree(processing_temp_dir) | |
print(f"Cleaned up temporary directory: {processing_temp_dir}") | |
raise | |
except Exception as e: | |
print(f"An unexpected error occurred in rig_glb_mesh_multistep: {e}") | |
if os.path.exists(processing_temp_dir): # Clean up on unexpected error | |
shutil.rmtree(processing_temp_dir) | |
print(f"Cleaned up temporary directory: {processing_temp_dir}") | |
raise gr.Error(f"An unexpected error occurred during processing: {str(e)[:500]}") | |
# --- Gradio Interface --- | |
theme = gr.themes.Soft( | |
primary_hue=gr.themes.colors.sky, | |
secondary_hue=gr.themes.colors.blue, | |
neutral_hue=gr.themes.colors.slate, | |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], | |
) | |
# Ensure UNIRIG_REPO_DIR check happens before interface is built if it's critical | |
if not os.path.isdir(UNIRIG_REPO_DIR) and __name__ == "__main__": # Check only if running as main script | |
print(f"CRITICAL STARTUP ERROR: UniRig repository not found at {UNIRIG_REPO_DIR}. The application will not work.") | |
# Define the interface | |
# Note: The @spaces.GPU decorator would go above the function `rig_glb_mesh_multistep` | |
iface = gr.Interface( | |
fn=rig_glb_mesh_multistep, | |
inputs=gr.File( | |
label="Upload .glb Mesh File", | |
type="filepath" # Corrected type for Gradio 4.x / 5.x | |
), | |
outputs=gr.Model3D( | |
label="Rigged 3D Model (.glb)", | |
clear_color=[0.8, 0.8, 0.8, 1.0], | |
), | |
title="UniRig Auto-Rigger (Python 3.11 / PyTorch 2.3+)", | |
description=( | |
"Upload a 3D mesh in `.glb` format. This application uses the latest UniRig to automatically rig the mesh.\n" | |
"The process involves: 1. Skeleton Prediction, 2. Skinning Weight Prediction, 3. Merging.\n" | |
"This may take several minutes. Ensure your GLB has clean geometry.\n" | |
f"Running on: {str(DEVICE).upper()}. UniRig repo expected at: '{os.path.basename(UNIRIG_REPO_DIR)}'.\n" | |
f"UniRig Source: https://github.com/VAST-AI-Research/UniRig" | |
), | |
cache_examples=False, | |
theme=theme | |
# allow_flagging="never" # Removed as it's deprecated in Gradio 4.x and default behavior is usually no flagging. | |
# If specific flagging control is needed, use `flagging_options` or similar. | |
) | |
if __name__ == "__main__": | |
if not os.path.isdir(UNIRIG_REPO_DIR): | |
print(f"CRITICAL: UniRig repository not found at {UNIRIG_REPO_DIR}. Ensure it's cloned in the Space's root.") | |
iface.launch() |