Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import trimesh | |
import os | |
import sys | |
import tempfile | |
import shutil | |
# Add UniRig source directory to Python path | |
# Assuming UniRig files are in a subdirectory named 'UniRig_src' | |
sys.path.append(os.path.join(os.path.dirname(__file__), 'UniRig_src')) | |
# Conditional import for AutoRigger and setup_source_mesh | |
# This helps in providing a clearer error if UniRig_src is not found | |
try: | |
from autorig import AutoRigger | |
from utils import setup_source_mesh | |
except ImportError as e: | |
print("Error importing from UniRig_src. Make sure the UniRig source files are in the 'UniRig_src' directory.") | |
print(f"Details: {e}") | |
# Define dummy functions if import fails, so Gradio can still load with an error message | |
def AutoRigger(*args, **kwargs): | |
raise RuntimeError("UniRig AutoRigger could not be loaded. Check UniRig_src setup.") | |
def setup_source_mesh(mesh, *args, **kwargs): | |
raise RuntimeError("UniRig setup_source_mesh could not be loaded. Check UniRig_src setup.") | |
# --- Configuration --- | |
# Define paths to the UniRig model files | |
# These files should be placed in the 'model_files' directory in your Hugging Face Space | |
MODEL_DIR = os.path.join(os.path.dirname(__file__), "model_files") | |
SMPL_SKELETON_PATH = os.path.join(MODEL_DIR, "smpl_skeleton.pkl") | |
SKIN_KPS_PREDICTOR_PATH = os.path.join(MODEL_DIR, "skin_kps_predictor.pkl") | |
# Check if model files exist | |
if not os.path.exists(SMPL_SKELETON_PATH) or not os.path.exists(SKIN_KPS_PREDICTOR_PATH): | |
print(f"Warning: Model files not found at {MODEL_DIR}. Please ensure smpl_skeleton.pkl and skin_kps_predictor.pkl are present.") | |
# Determine processing device (CUDA if available, otherwise CPU) | |
# ZeroGPU on Hugging Face Spaces should provide CUDA | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {DEVICE}") | |
if DEVICE.type == 'cuda': | |
print(f"CUDA Device Name: {torch.cuda.get_device_name(0)}") | |
print(f"CUDA Version: {torch.version.cuda}") | |
else: | |
print("CUDA not available, UniRig performance will be significantly slower on CPU.") | |
# --- Core Rigging Function --- | |
def rig_glb_mesh(input_glb_file): | |
""" | |
Takes an input GLB file, rigs it using UniRig, and returns the path to the rigged GLB file. | |
""" | |
if input_glb_file is None: | |
raise gr.Error("No input file provided. Please upload a .glb mesh.") | |
input_glb_path = input_glb_file.name # Get the path of the uploaded file | |
# Ensure UniRig components are loaded (they might be dummy if import failed) | |
if not callable(getattr(AutoRigger, '__init__', None)) or not callable(setup_source_mesh): | |
raise gr.Error("UniRig components are not correctly loaded. Please check the server logs and UniRig_src setup.") | |
try: | |
# Create a temporary directory for output | |
temp_dir = tempfile.mkdtemp() | |
output_glb_filename = "rigged_output.glb" | |
output_glb_path = os.path.join(temp_dir, output_glb_filename) | |
# 1. Load the mesh using trimesh | |
print(f"Loading mesh from: {input_glb_path}") | |
mesh = trimesh.load_mesh(input_glb_path, force='mesh', process=False) | |
if not isinstance(mesh, trimesh.Trimesh): | |
# If it's a Scene object, try to get a single geometry | |
if isinstance(mesh, trimesh.Scene): | |
if len(mesh.geometry) == 0: | |
raise gr.Error("Input GLB file contains no mesh geometry.") | |
# Concatenate all meshes in the scene into a single mesh | |
# This is a common approach, but might not be ideal for all GLB files | |
print(f"Input is a scene with {len(mesh.geometry)} geometries. Attempting to merge.") | |
mesh = trimesh.util.concatenate(list(mesh.geometry.values())) | |
if not isinstance(mesh, trimesh.Trimesh): | |
raise gr.Error(f"Could not extract a valid mesh from the GLB scene. Found type: {type(mesh)}") | |
else: | |
raise gr.Error(f"Failed to load a valid mesh from the input file. Loaded type: {type(mesh)}") | |
print("Mesh loaded successfully.") | |
# 2. Preprocess the mesh (as per UniRig's example) | |
# This step is crucial for UniRig to work correctly. | |
# It involves canonicalization and remeshing. | |
print("Preprocessing mesh...") | |
mesh = setup_source_mesh(mesh, device=DEVICE) | |
print("Mesh preprocessing complete.") | |
# 3. Initialize the AutoRigger | |
# Ensure model files are accessible | |
if not os.path.exists(SMPL_SKELETON_PATH) or not os.path.exists(SKIN_KPS_PREDICTOR_PATH): | |
raise gr.Error(f"UniRig model files not found. Searched in {MODEL_DIR}. Please check your Space's file structure.") | |
print("Initializing AutoRigger...") | |
autorigger = AutoRigger(SMPL_SKELETON_PATH, SKIN_KPS_PREDICTOR_PATH, device=DEVICE) | |
print("AutoRigger initialized.") | |
# 4. Perform rigging | |
print("Starting rigging process...") | |
# The `rig` method might require specific verts, faces, and normals if not handled by `setup_source_mesh` | |
# Assuming `setup_source_mesh` prepares it adequately. | |
output_dict = autorigger.rig(mesh) | |
print("Rigging process complete.") | |
# 5. Extract the rigged mesh | |
rigged_mesh = output_dict['rigged_mesh'] # This should be a trimesh.Trimesh object | |
print("Rigged mesh extracted.") | |
# 6. Export the rigged mesh to GLB format | |
print(f"Exporting rigged mesh to: {output_glb_path}") | |
rigged_mesh.export(output_glb_path) | |
print("Export complete.") | |
return output_glb_path | |
except Exception as e: | |
print(f"Error during rigging: {e}") | |
# Clean up temp dir in case of error | |
if 'temp_dir' in locals() and os.path.exists(temp_dir): | |
shutil.rmtree(temp_dir) | |
# Re-raise as Gradio error to display to user | |
raise gr.Error(f"An error occurred during processing: {str(e)}") | |
# No finally block for shutil.rmtree(temp_dir) here, | |
# because Gradio needs the file path to serve it. | |
# Gradio handles cleanup of temporary files created by gr.File. | |
# --- Gradio Interface --- | |
# Define a custom theme (Blue and Charcoal Gray) | |
# Using Soft theme with sky blue and slate gray | |
theme = gr.themes.Soft( | |
primary_hue=gr.themes.colors.sky, # A nice blue | |
secondary_hue=gr.themes.colors.blue, # Can be same as primary or a complementary blue | |
neutral_hue=gr.themes.colors.slate, # Charcoal gray | |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], | |
).set( | |
# Further fine-tuning if needed | |
# button_primary_background_fill="*primary_500", | |
# button_primary_text_color="white", | |
) | |
# Interface definition | |
iface = gr.Interface( | |
fn=rig_glb_mesh, | |
inputs=gr.File(label="Upload .glb Mesh File", type="file"), # 'file' gives a NamedTemporaryFile object | |
outputs=gr.Model3D(label="Rigged 3D Model (.glb)", clear_color=[0.8, 0.8, 0.8, 1.0]), # Model3D can display .glb | |
title="UniRig Auto-Rigger for 3D Meshes", | |
description=( | |
"Upload a 3D mesh in `.glb` format. This application uses UniRig to automatically rig the mesh.\n" | |
"The process may take a few minutes, especially for complex meshes. Ensure your GLB has clean geometry.\n" | |
f"Running on: {str(DEVICE).upper()}. Model files expected in '{MODEL_DIR}'.\n" | |
f"UniRig Source: https://github.com/VAST-AI-Research/UniRig" | |
), | |
examples=[ | |
# Add paths to example GLB files if you include them in your Space | |
# e.g., [os.path.join(os.path.dirname(__file__), "examples/sample_mesh.glb")] | |
], | |
cache_examples=False, # Set to True if you have static examples and want to pre-process them | |
theme=theme, | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
if not os.path.exists(os.path.join(os.path.dirname(__file__), 'UniRig_src')): | |
print("CRITICAL: 'UniRig_src' directory not found. Please ensure UniRig source files are correctly placed.") | |
iface.launch() | |