Mesh_Rigger / app.py
jkorstad's picture
Create app.py
da47f4c unverified
raw
history blame
8.09 kB
import gradio as gr
import torch
import trimesh
import os
import sys
import tempfile
import shutil
# Add UniRig source directory to Python path
# Assuming UniRig files are in a subdirectory named 'UniRig_src'
sys.path.append(os.path.join(os.path.dirname(__file__), 'UniRig_src'))
# Conditional import for AutoRigger and setup_source_mesh
# This helps in providing a clearer error if UniRig_src is not found
try:
from autorig import AutoRigger
from utils import setup_source_mesh
except ImportError as e:
print("Error importing from UniRig_src. Make sure the UniRig source files are in the 'UniRig_src' directory.")
print(f"Details: {e}")
# Define dummy functions if import fails, so Gradio can still load with an error message
def AutoRigger(*args, **kwargs):
raise RuntimeError("UniRig AutoRigger could not be loaded. Check UniRig_src setup.")
def setup_source_mesh(mesh, *args, **kwargs):
raise RuntimeError("UniRig setup_source_mesh could not be loaded. Check UniRig_src setup.")
# --- Configuration ---
# Define paths to the UniRig model files
# These files should be placed in the 'model_files' directory in your Hugging Face Space
MODEL_DIR = os.path.join(os.path.dirname(__file__), "model_files")
SMPL_SKELETON_PATH = os.path.join(MODEL_DIR, "smpl_skeleton.pkl")
SKIN_KPS_PREDICTOR_PATH = os.path.join(MODEL_DIR, "skin_kps_predictor.pkl")
# Check if model files exist
if not os.path.exists(SMPL_SKELETON_PATH) or not os.path.exists(SKIN_KPS_PREDICTOR_PATH):
print(f"Warning: Model files not found at {MODEL_DIR}. Please ensure smpl_skeleton.pkl and skin_kps_predictor.pkl are present.")
# Determine processing device (CUDA if available, otherwise CPU)
# ZeroGPU on Hugging Face Spaces should provide CUDA
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {DEVICE}")
if DEVICE.type == 'cuda':
print(f"CUDA Device Name: {torch.cuda.get_device_name(0)}")
print(f"CUDA Version: {torch.version.cuda}")
else:
print("CUDA not available, UniRig performance will be significantly slower on CPU.")
# --- Core Rigging Function ---
def rig_glb_mesh(input_glb_file):
"""
Takes an input GLB file, rigs it using UniRig, and returns the path to the rigged GLB file.
"""
if input_glb_file is None:
raise gr.Error("No input file provided. Please upload a .glb mesh.")
input_glb_path = input_glb_file.name # Get the path of the uploaded file
# Ensure UniRig components are loaded (they might be dummy if import failed)
if not callable(getattr(AutoRigger, '__init__', None)) or not callable(setup_source_mesh):
raise gr.Error("UniRig components are not correctly loaded. Please check the server logs and UniRig_src setup.")
try:
# Create a temporary directory for output
temp_dir = tempfile.mkdtemp()
output_glb_filename = "rigged_output.glb"
output_glb_path = os.path.join(temp_dir, output_glb_filename)
# 1. Load the mesh using trimesh
print(f"Loading mesh from: {input_glb_path}")
mesh = trimesh.load_mesh(input_glb_path, force='mesh', process=False)
if not isinstance(mesh, trimesh.Trimesh):
# If it's a Scene object, try to get a single geometry
if isinstance(mesh, trimesh.Scene):
if len(mesh.geometry) == 0:
raise gr.Error("Input GLB file contains no mesh geometry.")
# Concatenate all meshes in the scene into a single mesh
# This is a common approach, but might not be ideal for all GLB files
print(f"Input is a scene with {len(mesh.geometry)} geometries. Attempting to merge.")
mesh = trimesh.util.concatenate(list(mesh.geometry.values()))
if not isinstance(mesh, trimesh.Trimesh):
raise gr.Error(f"Could not extract a valid mesh from the GLB scene. Found type: {type(mesh)}")
else:
raise gr.Error(f"Failed to load a valid mesh from the input file. Loaded type: {type(mesh)}")
print("Mesh loaded successfully.")
# 2. Preprocess the mesh (as per UniRig's example)
# This step is crucial for UniRig to work correctly.
# It involves canonicalization and remeshing.
print("Preprocessing mesh...")
mesh = setup_source_mesh(mesh, device=DEVICE)
print("Mesh preprocessing complete.")
# 3. Initialize the AutoRigger
# Ensure model files are accessible
if not os.path.exists(SMPL_SKELETON_PATH) or not os.path.exists(SKIN_KPS_PREDICTOR_PATH):
raise gr.Error(f"UniRig model files not found. Searched in {MODEL_DIR}. Please check your Space's file structure.")
print("Initializing AutoRigger...")
autorigger = AutoRigger(SMPL_SKELETON_PATH, SKIN_KPS_PREDICTOR_PATH, device=DEVICE)
print("AutoRigger initialized.")
# 4. Perform rigging
print("Starting rigging process...")
# The `rig` method might require specific verts, faces, and normals if not handled by `setup_source_mesh`
# Assuming `setup_source_mesh` prepares it adequately.
output_dict = autorigger.rig(mesh)
print("Rigging process complete.")
# 5. Extract the rigged mesh
rigged_mesh = output_dict['rigged_mesh'] # This should be a trimesh.Trimesh object
print("Rigged mesh extracted.")
# 6. Export the rigged mesh to GLB format
print(f"Exporting rigged mesh to: {output_glb_path}")
rigged_mesh.export(output_glb_path)
print("Export complete.")
return output_glb_path
except Exception as e:
print(f"Error during rigging: {e}")
# Clean up temp dir in case of error
if 'temp_dir' in locals() and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
# Re-raise as Gradio error to display to user
raise gr.Error(f"An error occurred during processing: {str(e)}")
# No finally block for shutil.rmtree(temp_dir) here,
# because Gradio needs the file path to serve it.
# Gradio handles cleanup of temporary files created by gr.File.
# --- Gradio Interface ---
# Define a custom theme (Blue and Charcoal Gray)
# Using Soft theme with sky blue and slate gray
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.sky, # A nice blue
secondary_hue=gr.themes.colors.blue, # Can be same as primary or a complementary blue
neutral_hue=gr.themes.colors.slate, # Charcoal gray
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
).set(
# Further fine-tuning if needed
# button_primary_background_fill="*primary_500",
# button_primary_text_color="white",
)
# Interface definition
iface = gr.Interface(
fn=rig_glb_mesh,
inputs=gr.File(label="Upload .glb Mesh File", type="file"), # 'file' gives a NamedTemporaryFile object
outputs=gr.Model3D(label="Rigged 3D Model (.glb)", clear_color=[0.8, 0.8, 0.8, 1.0]), # Model3D can display .glb
title="UniRig Auto-Rigger for 3D Meshes",
description=(
"Upload a 3D mesh in `.glb` format. This application uses UniRig to automatically rig the mesh.\n"
"The process may take a few minutes, especially for complex meshes. Ensure your GLB has clean geometry.\n"
f"Running on: {str(DEVICE).upper()}. Model files expected in '{MODEL_DIR}'.\n"
f"UniRig Source: https://github.com/VAST-AI-Research/UniRig"
),
examples=[
# Add paths to example GLB files if you include them in your Space
# e.g., [os.path.join(os.path.dirname(__file__), "examples/sample_mesh.glb")]
],
cache_examples=False, # Set to True if you have static examples and want to pre-process them
theme=theme,
allow_flagging="never"
)
if __name__ == "__main__":
if not os.path.exists(os.path.join(os.path.dirname(__file__), 'UniRig_src')):
print("CRITICAL: 'UniRig_src' directory not found. Please ensure UniRig source files are correctly placed.")
iface.launch()