Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
from transformers import pipeline
|
4 |
+
from PIL import Image
|
5 |
+
import pytesseract
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
CORS(app)
|
11 |
+
|
12 |
+
# Load pretrained BERT model
|
13 |
+
classifier = pipeline("text-classification", model="jy46604790/Fake-News-Bert-Detect", tokenizer="jy46604790/Fake-News-Bert-Detect")
|
14 |
+
|
15 |
+
@app.route("/predict", methods=["POST"])
|
16 |
+
def predict_text():
|
17 |
+
data = request.json
|
18 |
+
text = data.get("text", "")
|
19 |
+
if not text.strip():
|
20 |
+
return jsonify({"error": "No text provided"}), 400
|
21 |
+
|
22 |
+
result = classifier(text)[0]
|
23 |
+
label = "Real" if result['label'] == 'LABEL_1' else "Fake"
|
24 |
+
return jsonify({"label": label, "confidence": round(result["score"] * 100, 2)})
|
25 |
+
|
26 |
+
@app.route("/predict-image", methods=["POST"])
|
27 |
+
def predict_image():
|
28 |
+
data = request.json
|
29 |
+
image_b64 = data.get("image")
|
30 |
+
|
31 |
+
if not image_b64:
|
32 |
+
return jsonify({"error": "No image provided"}), 400
|
33 |
+
|
34 |
+
try:
|
35 |
+
img_bytes = base64.b64decode(image_b64)
|
36 |
+
img = Image.open(io.BytesIO(img_bytes))
|
37 |
+
text = pytesseract.image_to_string(img)
|
38 |
+
except Exception as e:
|
39 |
+
return jsonify({"error": "Invalid image data"}), 400
|
40 |
+
|
41 |
+
if not text.strip():
|
42 |
+
return jsonify({"error": "No text found in image"}), 400
|
43 |
+
|
44 |
+
result = classifier(text)[0]
|
45 |
+
label = "Real" if result['label'] == 'LABEL_1' else "Fake"
|
46 |
+
return jsonify({"label": label, "confidence": round(result["score"] * 100, 2), "extracted_text": text})
|