Spaces:
Paused
Paused
import gc | |
from typing import TYPE_CHECKING | |
if TYPE_CHECKING: | |
from collections.abc import Callable | |
import numpy as np | |
import PIL.Image | |
import torch | |
from controlnet_aux import ( | |
CannyDetector, | |
ContentShuffleDetector, | |
HEDdetector, | |
LineartAnimeDetector, | |
LineartDetector, | |
MidasDetector, | |
MLSDdetector, | |
NormalBaeDetector, | |
OpenposeDetector, | |
PidiNetDetector, | |
) | |
from controlnet_aux.util import HWC3 | |
from cv_utils import resize_image | |
from depth_estimator import DepthEstimator | |
from image_segmentor import ImageSegmentor | |
class Preprocessor: | |
MODEL_ID = "lllyasviel/Annotators" | |
def __init__(self) -> None: | |
self.model: Callable = None # type: ignore | |
self.name = "" | |
def load(self, name: str) -> None: # noqa: C901, PLR0912 | |
if name == self.name: | |
return | |
if name == "HED": | |
self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
elif name == "Midas": | |
self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
elif name == "MLSD": | |
self.model = MLSDdetector.from_pretrained(self.MODEL_ID) | |
elif name == "Openpose": | |
self.model = OpenposeDetector.from_pretrained(self.MODEL_ID) | |
elif name == "PidiNet": | |
self.model = PidiNetDetector.from_pretrained(self.MODEL_ID) | |
elif name == "NormalBae": | |
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID) | |
elif name == "Lineart": | |
self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
elif name == "LineartAnime": | |
self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID) | |
elif name == "Canny": | |
self.model = CannyDetector() | |
elif name == "ContentShuffle": | |
self.model = ContentShuffleDetector() | |
elif name == "DPT": | |
self.model = DepthEstimator() | |
elif name == "UPerNet": | |
self.model = ImageSegmentor() | |
elif name == 'texnet': | |
self.model = TexnetPreprocessor() | |
else: | |
raise ValueError | |
torch.cuda.empty_cache() | |
gc.collect() | |
self.name = name | |
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: # noqa: ANN003 | |
if self.name == "Canny": | |
if "detect_resolution" in kwargs: | |
detect_resolution = kwargs.pop("detect_resolution") | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
return PIL.Image.fromarray(image) | |
if self.name == "Midas": | |
detect_resolution = kwargs.pop("detect_resolution", 512) | |
image_resolution = kwargs.pop("image_resolution", 512) | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
return PIL.Image.fromarray(image) | |
return self.model(image, **kwargs) | |
# https://github.com/huggingface/controlnet_aux/blob/master/src/controlnet_aux/canny/__init__.py | |
class TexnetPreprocessor: | |
def __call__(self, input_image=None, low_threshold=100, high_threshold=200, image_resolution=512, output_type=None, **kwargs): | |
if "img" in kwargs: | |
warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning) | |
input_image = kwargs.pop("img") | |
if input_image is None: | |
raise ValueError("input_image must be defined.") | |
if not isinstance(input_image, np.ndarray): | |
input_image = np.array(input_image, dtype=np.uint8) | |
output_type = output_type or "pil" | |
else: | |
output_type = output_type or "np" | |
input_image = HWC3(input_image) | |
input_image = resize_image(input_image, image_resolution) | |
H, W, C = input_image.shape | |
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
output_image = input_image.copy() | |
if output_type == "pil": | |
# detected_map = Image.fromarray(detected_map) | |
output_image = PIL.Image.fromarray(output_image) | |
return output_image |