Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,755 Bytes
50f0b00 a1f262a 50f0b00 a1f262a 50f0b00 45fa259 50f0b00 a1f262a 50f0b00 7562a15 50f0b00 7562a15 50f0b00 fa4c25e 50f0b00 50c0f11 50f0b00 50c0f11 50f0b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import numpy as np
import random
from PIL import Image
import os
import spaces
from diffusers import StableDiffusion3Pipeline
import torch
from peft import PeftModel
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "frankjoshua/stable-diffusion-3.5-medium"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = StableDiffusion3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
lora_models = {
"None": None,
"GenEval": "jieliu/SD3.5M-FlowGRPO-GenEval",
"Text Rendering": "jieliu/SD3.5M-FlowGRPO-Text",
"Human Prefer": "jieliu/SD3.5M-FlowGRPO-PickScore",
}
lora_prompts = {
"GenEval": os.path.join(os.getcwd(), "prompts/geneval.txt"),
"Text Rendering": os.path.join(os.getcwd(), "prompts/ocr.txt"),
"Human Prefer": os.path.join(os.getcwd(), "prompts/pickscore.txt"),
}
pipe.transformer = PeftModel.from_pretrained(pipe.transformer, lora_models["GenEval"], adapter_name="GenEval")
pipe.transformer.load_adapter(lora_models["Text Rendering"], adapter_name="Text Rendering")
pipe.transformer.load_adapter(lora_models["Human Prefer"], adapter_name="Human Prefer")
pipe = pipe.to(device)
# COUNTER_FILE = os.path.join(os.getcwd(),"model_call_counter.txt")
COUNTER_FILE = os.path.join("/data/model_call_counter.txt")
def get_call_count():
if not os.path.exists(COUNTER_FILE):
return 0
try:
with open(COUNTER_FILE, 'r') as f:
return int(f.read().strip())
except:
return 0
def update_call_count():
count = get_call_count() + 1
with open(COUNTER_FILE, 'w') as f:
f.write(str(count))
return count
def sample_prompt(lora_model):
if lora_model in lora_models and lora_model != "None":
file_path = f"{lora_prompts[lora_model]}"
try:
with open(file_path, 'r') as file:
prompts = file.readlines()
if lora_model=='GenEval':
total_lines = len(prompts)
if total_lines > 0:
weights = [1/(i+1) for i in range(total_lines)]
sum_weights = sum(weights)
normalized_weights = [w/sum_weights for w in weights]
return random.choices(prompts, weights=normalized_weights, k=1)[0].strip()
return "No prompts found in file."
else:
return random.choice(prompts).strip()
except FileNotFoundError:
return "Prompt file not found."
return ""
def create_grid_image(images):
# Create a 2x2 grid from the 4 images
width, height = images[0].size
grid_image = Image.new('RGB', (width * 2, height * 2))
# Paste images in a 2x2 grid
grid_image.paste(images[0], (0, 0))
grid_image.paste(images[1], (width, 0))
grid_image.paste(images[2], (0, height))
grid_image.paste(images[3], (width, height))
return grid_image
@spaces.GPU
def infer(
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_model,
progress=gr.Progress(track_tqdm=True),
):
call_count = update_call_count()
images = []
seeds = []
# Generate 4 images
for i in range(4):
if randomize_seed:
current_seed = random.randint(0, MAX_SEED)
else:
current_seed = seed + i # Use sequential seeds if not randomizing
seeds.append(current_seed)
generator = torch.Generator().manual_seed(current_seed)
sampled_prompt = sample_prompt(lora_model)
final_prompt = prompt if prompt else sampled_prompt
if lora_model == "None":
with pipe.transformer.disable_adapter():
image = pipe(
prompt=final_prompt,
negative_prompt="",
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
else:
pipe.transformer.set_adapter(lora_model)
image = pipe(
prompt=final_prompt,
negative_prompt="",
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
images.append(image)
# Create a 2x2 grid from the 4 images
grid_image = create_grid_image(images)
return grid_image, ", ".join(map(str, seeds)), f"Model has been called {call_count} times"
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# SD3.5 Medium + Flow-GRPO
Our model is trained separately for different tasks, so it’s best to use the corresponding prompt format for each task.
**User Guide:**
1. Select a LoRA model (choose “None” to use the base model)
2. Click “Sample Prompt” to randomly select from ~1000 task-specific prompts, or write your own
3. Click “Run” to generate images (a 2×2 grid of 4 images will be produced)
**Note:**
- For the *Text Rendering* task, please enclose the text to be displayed in **double quotes (`"`)**, not single quotes (`'`)
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
with gr.Row():
lora_model = gr.Dropdown(
label="LoRA Model",
choices=list(lora_models.keys()),
value="GenEval"
)
sample_prompt_button = gr.Button("Sample Prompt", scale=0, variant="secondary")
def update_sampled_prompt(lora_model):
return sample_prompt(lora_model)
sample_prompt_button.click(
fn=update_sampled_prompt,
inputs=[lora_model],
outputs=[prompt]
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Results (2x2 Grid)", show_label=True)
seed_display = gr.Textbox(label="Seeds Used", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Starting Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seeds", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=4.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40, # Replace with defaults that work for your model
)
call_count_display = gr.Textbox(
label="Model Call Count",
value=f"Model has been called {get_call_count()} times",
interactive=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_model,
],
outputs=[result, seed_display, call_count_display],
)
if __name__ == "__main__":
demo.launch()
|