File size: 8,755 Bytes
50f0b00
 
 
 
 
 
a1f262a
50f0b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f262a
 
50f0b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45fa259
 
 
 
 
 
 
 
 
 
50f0b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f262a
50f0b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7562a15
 
50f0b00
7562a15
 
 
 
 
 
 
 
 
 
50f0b00
 
 
 
 
 
 
 
 
 
 
 
 
fa4c25e
50f0b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50c0f11
 
 
 
 
50f0b00
 
 
 
 
 
 
 
 
 
 
 
 
50c0f11
50f0b00
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import numpy as np
import random
from PIL import Image
import os

import spaces
from diffusers import StableDiffusion3Pipeline
import torch
from peft import PeftModel

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "frankjoshua/stable-diffusion-3.5-medium"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = StableDiffusion3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

lora_models = {
    "None": None,
    "GenEval": "jieliu/SD3.5M-FlowGRPO-GenEval",
    "Text Rendering": "jieliu/SD3.5M-FlowGRPO-Text",
    "Human Prefer": "jieliu/SD3.5M-FlowGRPO-PickScore",
}

lora_prompts = {
    "GenEval": os.path.join(os.getcwd(), "prompts/geneval.txt"),
    "Text Rendering": os.path.join(os.getcwd(), "prompts/ocr.txt"),
    "Human Prefer": os.path.join(os.getcwd(), "prompts/pickscore.txt"),
}

pipe.transformer = PeftModel.from_pretrained(pipe.transformer, lora_models["GenEval"], adapter_name="GenEval")
pipe.transformer.load_adapter(lora_models["Text Rendering"], adapter_name="Text Rendering")
pipe.transformer.load_adapter(lora_models["Human Prefer"], adapter_name="Human Prefer")
pipe = pipe.to(device)

# COUNTER_FILE = os.path.join(os.getcwd(),"model_call_counter.txt")
COUNTER_FILE = os.path.join("/data/model_call_counter.txt")

def get_call_count():
    if not os.path.exists(COUNTER_FILE):
        return 0
    try:
        with open(COUNTER_FILE, 'r') as f:
            return int(f.read().strip())
    except:
        return 0

def update_call_count():
    count = get_call_count() + 1
    with open(COUNTER_FILE, 'w') as f:
        f.write(str(count))
    return count

def sample_prompt(lora_model):
    if lora_model in lora_models and lora_model != "None":
        file_path = f"{lora_prompts[lora_model]}"
        try:
            with open(file_path, 'r') as file:
                prompts = file.readlines()
                if lora_model=='GenEval':
                    total_lines = len(prompts)
                    if total_lines > 0:
                        weights = [1/(i+1) for i in range(total_lines)]
                        sum_weights = sum(weights)
                        normalized_weights = [w/sum_weights for w in weights]
                        return random.choices(prompts, weights=normalized_weights, k=1)[0].strip()
                    return "No prompts found in file."
                else:
                    return random.choice(prompts).strip()
        except FileNotFoundError:
            return "Prompt file not found."
    return ""

def create_grid_image(images):
    # Create a 2x2 grid from the 4 images
    width, height = images[0].size
    grid_image = Image.new('RGB', (width * 2, height * 2))
    
    # Paste images in a 2x2 grid
    grid_image.paste(images[0], (0, 0))
    grid_image.paste(images[1], (width, 0))
    grid_image.paste(images[2], (0, height))
    grid_image.paste(images[3], (width, height))
    
    return grid_image

@spaces.GPU
def infer(
    prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    lora_model,
    progress=gr.Progress(track_tqdm=True),
):
    call_count = update_call_count()
    
    images = []
    seeds = []
    
    # Generate 4 images
    for i in range(4):
        if randomize_seed:
            current_seed = random.randint(0, MAX_SEED)
        else:
            current_seed = seed + i  # Use sequential seeds if not randomizing
        
        seeds.append(current_seed)
        generator = torch.Generator().manual_seed(current_seed)
        sampled_prompt = sample_prompt(lora_model)
        final_prompt = prompt if prompt else sampled_prompt

        if lora_model == "None":
            with pipe.transformer.disable_adapter():
                image = pipe(
                    prompt=final_prompt,
                    negative_prompt="",
                    guidance_scale=guidance_scale,
                    num_inference_steps=num_inference_steps,
                    width=width,
                    height=height,
                    generator=generator,
                ).images[0]
        else:
            pipe.transformer.set_adapter(lora_model)
            image = pipe(
                prompt=final_prompt,
                negative_prompt="",
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
            ).images[0]
        
        images.append(image)
    
    # Create a 2x2 grid from the 4 images
    grid_image = create_grid_image(images)
    
    return grid_image, ", ".join(map(str, seeds)), f"Model has been called {call_count} times"


css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
# SD3.5 Medium + Flow-GRPO

Our model is trained separately for different tasks, so it’s best to use the corresponding prompt format for each task.

**User Guide:**
1. Select a LoRA model (choose “None” to use the base model)  
2. Click “Sample Prompt” to randomly select from ~1000 task-specific prompts, or write your own  
3. Click “Run” to generate images (a 2×2 grid of 4 images will be produced)

**Note:**  
- For the *Text Rendering* task, please enclose the text to be displayed in **double quotes (`"`)**, not single quotes (`'`)  
""")
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

        with gr.Row():
            lora_model = gr.Dropdown(
                label="LoRA Model",
                choices=list(lora_models.keys()),
                value="GenEval"
            )

            sample_prompt_button = gr.Button("Sample Prompt", scale=0, variant="secondary")

            def update_sampled_prompt(lora_model):
                return sample_prompt(lora_model)

            sample_prompt_button.click(
                fn=update_sampled_prompt,
                inputs=[lora_model],
                outputs=[prompt]
            )

            run_button = gr.Button("Run", scale=0, variant="primary")
        
        
        result = gr.Image(label="Results (2x2 Grid)", show_label=True)
        seed_display = gr.Textbox(label="Seeds Used", show_label=True)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Starting Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seeds", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=4.5,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=40,  # Replace with defaults that work for your model
                )

        call_count_display = gr.Textbox(
            label="Model Call Count", 
            value=f"Model has been called {get_call_count()} times",
            interactive=False
        )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_model,
        ],
        outputs=[result, seed_display, call_count_display],
    )

if __name__ == "__main__":
    demo.launch()