Spaces:
Running
on
Zero
Running
on
Zero
jedick
commited on
Commit
·
feb987c
1
Parent(s):
6444d2c
Use consistent casing for predictions and user labels
Browse files
app.py
CHANGED
@@ -53,25 +53,15 @@ def prediction_to_df(prediction=None):
|
|
53 |
"""
|
54 |
if prediction is None or prediction == "":
|
55 |
# Show an empty plot for app initialization or auto-reload
|
56 |
-
prediction = {"
|
57 |
elif "Model" in prediction:
|
58 |
# Show full-height bars when the model is changed
|
59 |
-
prediction = {"
|
60 |
else:
|
61 |
# Convert predictions text to dictionary
|
62 |
prediction = eval(prediction)
|
63 |
-
# Rename dictionary keys to use consistent labels across models
|
64 |
-
prediction = {
|
65 |
-
("SUPPORT" if k == "entailment" else k): v for k, v in prediction.items()
|
66 |
-
}
|
67 |
-
prediction = {
|
68 |
-
("NEI" if k == "neutral" else k): v for k, v in prediction.items()
|
69 |
-
}
|
70 |
-
prediction = {
|
71 |
-
("REFUTE" if k == "contradiction" else k): v for k, v in prediction.items()
|
72 |
-
}
|
73 |
# Use custom order for labels (pipe() returns labels in descending order of softmax score)
|
74 |
-
labels = ["
|
75 |
prediction = {k: prediction[k] for k in labels}
|
76 |
# Convert dictionary to DataFrame with one column (Probability)
|
77 |
df = pd.DataFrame.from_dict(prediction, orient="index", columns=["Probability"])
|
@@ -140,7 +130,7 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
140 |
x="Class",
|
141 |
y="Probability",
|
142 |
color="Class",
|
143 |
-
color_map={"
|
144 |
inputs=prediction,
|
145 |
y_lim=([0, 1]),
|
146 |
visible=False,
|
@@ -278,6 +268,18 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
278 |
d["label"]: d["score"]
|
279 |
for d in pipe({"text": evidence, "text_pair": claim}, top_k=3)
|
280 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
# Return two instances of the prediction to send to different Gradio components
|
282 |
return prediction, prediction
|
283 |
|
@@ -333,7 +335,7 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
333 |
Append input/outputs and user feedback to a JSON Lines file.
|
334 |
"""
|
335 |
# Get the first label (prediction with highest probability)
|
336 |
-
prediction =
|
337 |
with USER_FEEDBACK_PATH.open("a") as f:
|
338 |
f.write(
|
339 |
json.dumps(
|
|
|
53 |
"""
|
54 |
if prediction is None or prediction == "":
|
55 |
# Show an empty plot for app initialization or auto-reload
|
56 |
+
prediction = {"Support": 0, "NEI": 0, "Refute": 0}
|
57 |
elif "Model" in prediction:
|
58 |
# Show full-height bars when the model is changed
|
59 |
+
prediction = {"Support": 1, "NEI": 1, "Refute": 1}
|
60 |
else:
|
61 |
# Convert predictions text to dictionary
|
62 |
prediction = eval(prediction)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Use custom order for labels (pipe() returns labels in descending order of softmax score)
|
64 |
+
labels = ["Support", "NEI", "Refute"]
|
65 |
prediction = {k: prediction[k] for k in labels}
|
66 |
# Convert dictionary to DataFrame with one column (Probability)
|
67 |
df = pd.DataFrame.from_dict(prediction, orient="index", columns=["Probability"])
|
|
|
130 |
x="Class",
|
131 |
y="Probability",
|
132 |
color="Class",
|
133 |
+
color_map={"Support": "green", "NEI": "#888888", "Refute": "#FF8888"},
|
134 |
inputs=prediction,
|
135 |
y_lim=([0, 1]),
|
136 |
visible=False,
|
|
|
268 |
d["label"]: d["score"]
|
269 |
for d in pipe({"text": evidence, "text_pair": claim}, top_k=3)
|
270 |
}
|
271 |
+
# Rename dictionary keys to use consistent labels across models
|
272 |
+
prediction = {
|
273 |
+
("Support" if k in ["SUPPORT", "entailment"] else k): v
|
274 |
+
for k, v in prediction.items()
|
275 |
+
}
|
276 |
+
prediction = {
|
277 |
+
("NEI" if k in ["NEI", "neutral"] else k): v for k, v in prediction.items()
|
278 |
+
}
|
279 |
+
prediction = {
|
280 |
+
("Refute" if k in ["REFUTE", "contradiction"] else k): v
|
281 |
+
for k, v in prediction.items()
|
282 |
+
}
|
283 |
# Return two instances of the prediction to send to different Gradio components
|
284 |
return prediction, prediction
|
285 |
|
|
|
335 |
Append input/outputs and user feedback to a JSON Lines file.
|
336 |
"""
|
337 |
# Get the first label (prediction with highest probability)
|
338 |
+
prediction = next(iter(label))
|
339 |
with USER_FEEDBACK_PATH.open("a") as f:
|
340 |
f.write(
|
341 |
json.dumps(
|